Evaluation of peak ground acceleration for the city of Kerman through seismic hazard analysis

Document Type : Article

Authors

1 Department of Geophysics, University of Advanced Technology, Kerman, Iran

2 Department of Civil Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, Probabilistic Seismic Hazard Analysis (PSHA) approach is used to evaluate the distribution of Peak Ground Acceleration (PGA) and their corresponding probabilities for Kerman region in S-E of Iran. The geological and seismological data were integrated into a probabilistic seismic hazard model for the region. Historical and instrumental earthquake data, geology, tectonics, fault activity and seismic source models related to seismic events are taken into account. Foreshocks and aftershocks are rationally eliminated and main shock records are used to evaluate seismicity parameters using Kijko method. The use of such method is advantageous since it accounts for incomplete or inaccurate seismic data related to various seismic sources in the region. CRISIS2007 software is also used to carry seismic hazard analysis for the region and to develop the maps of iso-acceleration contours and for various return periods.   
The results have been displayed as the probabilistic estimates of PGA for the return periods of 50, 75 and 475 years. Comparison of the results obtained here with those suggested by Iranian Code of Practice for Seismic Resistance Design of Buildings (Standard No. 2800 Version 1393) are also presented. Results obtained in this study provides the basis for the preparation of seismic risk maps.

Keywords

Main Subjects


Refrences:
1.Tatar, M., Hatzfeld, D., Moradi, A., and Paul, A. The 2003 December 26 Bam earthquake (Iran), Mw 6.6, aftershock sequence", Geophysical Journal International, 163(1), pp. 90-105 (2005).
2. Jackson, J., Bouchon, M., Fielding, E., Funning, G., Ghorashi, M., Hatzfeld, D., Nazari, H., Parsons, B., Priestley, K., and Talebian, M. Seismotectonic, rupture process, and earthquake-hazard aspects of the 2003 December 26 Bam, Iran, earthquake", Geophysical Journal International, 166(3), pp. 1270-1292 (2006).
3. Nalbant, S.S., Steacy, S., and McCloskey, J. Stress transfer relations among the earthquakes that occurred in Kerman province, southern Iran since 1981", Geophysical Journal International, 167(1), pp. 309-318 (2006).
4. Berberian, M., Jackson, J., Ghorashi, M., and Kadjar, M. Field and teleseismic observations of the 1981 Golbaf-Sirch earthquakes in SE Iran", Geophysical Journal International, 77(3), pp. 809-838 (1984).
5. Berberian, M., Jackson, J., Fielding, E., Parsons, B., Priestley, K., Qorashi, M., Talebian, M., Walker, R., Wright, T.J., and Baker, C. The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone", Geophysical Journal International, 146(2), pp. 371-398 (2001).
6. Talebian, M., Biggs, J., Bolourchi, M., Copley, A., Ghassemi, A., Ghorashi, M., Hollingsworth, J., Jackson, J., Nissen, E., and Oveisi, B. The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: reactivation of an intramountain reverse fault", Geophysical Journal International, 164(1), pp. 137- 148 (2006).
7. Rouhollahi, R., Ghayamghamian, M., Yaminifard, F., Suhadolc, P., and Tatar, M. Source process and slip model of 2005 Dahuiyeh-Zarand earthquake (Iran) using inversion of near-_eld strong motion data", Geophysical Journal International, 189(1), pp. 669- 680 (2012).
8. Rahnama-Rad, J., Firuzan, M., and Baraeenejhad, M. Soil collapsibility of Kerman city", 1st Int. Applied Geological Congress, Department of Geology, Islamic Azad University, Mashad, Iran, pp. 1-6 (2010).
9. Kijko, A. and Sellevoll, M.A. Estimation of earthquake hazard parameters from incomplete data _les. Part I. Utilization of extreme and complete catalogs with di_erent threshold magnitudes", Bulletin of the Seismological Society of America, 79(3), pp. 645-654 (1989).
10. Kijko, A. and Sellevoll, M.A. Estimation of earthquake hazard parameters from incomplete data _les. Part II. Incorporation of magnitude heterogeneity", Bulletin of the Seismological Society of America, 82(1), pp. 120-134 (1992). 11. Kijko, A. Statistical estimation of maximum regional earthquake magnitude Mmax", Workshop of Seismicity Modeling in Seismic Hazard Mapping, Poljce, Slovenia, Geological Survey, (2000).
12. Iranian Code of Practice for Seismic Resistant Design of Buildings", Standard No. 2800, Version 4, Road, Housing & Urban Development Research Center (pub.), BHRC-PNS-253 (In Persian) (2014).
13. Ambraseys, N. and Melville, C. A History of Persian Earthquakes, Cambridge Univ., Press, New York, (1982).
14. Berberian, M. Natural Hazards and the first earthquake catalogue of Iran", Historical Hazards in Iran Prior to 1900, International Institute of Earthquake Engineering and Seismology, Tehran, 1, p. 603 (1994).
15. Tavakoli, B. and Ghafory-Ashtiany, M. Seismic hazard assessment of Iran", Annals of Geophysics, 42(6), pp. 1013-1021 (1999). M. Saa_zaadeh and M.H. Bagheripour/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 257{272 271
16. Niazi, M. and Basford, J.R. Seismicity of Iranian plateau and Hindu Kush region", Bulletin of the Seismological Society of America, 58(1), pp. 417-426 (1968).
17. Nowroozi, A.A. Seismo-tectonics of the Persian plateau, eastern Turkey, Caucasus, and Hindu-Kush regions", Bulletin of the Seismological Society of America, 61(2), pp. 317-341 (1971).
18. Nowroozi, A.A. Seismotectonic provinces of Iran", Bulletin of the Seismological Society of America, 66(4), pp. 1249-1276 (1976).
19. Banisadr, M. The seismicity of Iran: 1900-1969", Technical Research and Standard Bureau, Plan Organization, (1971). 20. Ambraseys, N. and Moinfar, A. The seismicity of Iran. The Silakhor, Lurestan, earthquake of 23rd January, 1909", Annali di geo_sica, 26(4), pp. 659-678 (1973).
21. Berberian, M., The Seismicity of Iran Preliminary Map of Epicentres and Focal Depth 1: 2 500 000, Geological survey of Iran, Seismotectonic Group (1973).
22. Tchalenko, J. Seismicity and structure of the North Tehran fault", Tectonophys, 29, pp. 411-420 (1975).
23. Nabavi, S. Historical earthquakes in Iran, 300BC- 1900 AD", Journal of Earth and Space Physics, 7(1), pp. 70-117 (1978). 24. Berberian, M. Discussion of the paper AA Nowroozi, 1976, seismotectonic provinces of Iran", Bulletin of the Seismological Society of America, 69(1), pp. 293-297 (1979).
25. Ambraseys, N. and Melville, C., A History of Persian Earthquakes, Cambridge University Press (2005).
26. Mousavi-Bafrouei, S.H., Mirzaei, N., and Shabani, E. A declustered earthquake catalog for the Iranian Plateau", Annals of Geophysics, 57(6), pp. 1-25 (2015).
27. Ghodrati Amiri, G.H., Kazemiashtiani, V., and Razavian, S. Seismic hazard analysis and obtaining peak ground acceleration for Arak region, Iran", Asian J. Civil Eng. (Building Hous), 11, pp. 183-206 (2010).
28. Stocklin, J. Structural history and tectonics of Iran: A review", AAPG Bulletin, 52(7) pp. 1229-1258 (1968).
29. Takin, M. Iranian geology and continental drift in the Middle East", Nature, 235, pp. 147-150 (1972).
30. Berberian, M. Contribution to the seismotectonics of Iran (part II-III)", In Commemoration of the 50th Anniversary of the Pahlavi Dynasty, Ministry of Industry and Mines, Geological Survey of Iran, Tectonic and Seismotectonic Section (1976).
31. Tavakoli, B., Major Seismotectonic Provinces of Iran, International Institute of Earthquake Engineering and Seismology, Internal Document (1996).
32. Hanks, T.C. and Kanamori, H. A moment magnitude scale", Journal of Geophysical Research, 84, pp. 2345- 2350 (1979). 33. Aki, K. Earthquake mechanism", Tectonophysics, 13(1-4), pp. 423-446 (1972).
34. Karimiparidari, S., Zar_e, M., Memarian, H., and Kijko, A. Iranian earthquakes, a uniform catalog with moment magnitudes", Journal of Seismology, 17(3), pp. 897-911 (2013).
35. Ghodrati Amiri, G., Amrei, S.R., editors. Seismic hazard assessment of Gilan province including Manjil in Iran", Proc 14th World Conf Earthquake Eng, Beijing, China (2008).
36. Ghodrati Amiri, G., Andisheh, K., Razavian, A., and Seyed, A. Probabilistic seismic hazard assessment of Sanandaj, Iran", Structural Engineering and Mechanics (Techno-Press), 32(4), pp. 563-581 (2009).
37. Kijko, A. and Graham, G. Parametric-historic procedure for probabilistic seismic hazard analysis, Part II: Assessment of seismic hazard at speci_ed site", Pure and Applied Geophysics, 154, pp. 1-22 (1999).
38. Kramer, S., Geotechnical Earthquake Engineering, Prentice-Hall international series in Civil Engineering and Engineering Mechanics, Prentice Hall, USA, (1996).
39. Gutenberg, B., and Richter, C.F. Earthquake magnitude, intensity, energy, and acceleration (second paper)", Bulletin of the Seismological Society of America, 46(2), pp. 105-145 (1956).
40. Wesnousky, S., Scholz, C., Shimazaki, K., and Matsuda, T. Integration of geological and seismological data for the analysis of seismic hazard: A case study of Japan", Bulletin of the Seismological Society of America, 74(2), pp. 687-708 (1984).
41. Youngs, R.R. and Coppersmith, K.J. Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates", Bulletin of the Seismological Society of America, 75(4), pp. 939-964 (1985).
42. Sharma, M.L. Attenuation relationship for estimation of peak ground horizontal acceleration using data from strong-motion arrays in India", Bulletin of the Seismological Society of America, 88(4), pp. 1063-1069 (1998).
43. Sarma, S. and Srbulov, M. A simpli_ed method for prediction of kinematic horizontal acceleration of a rigid foundation", Earthquake Engineering and Structural Dynamics, 25, pp. 815-836 (1996).
44. Ramazi, H., Editor. Attenuation laws of Iranian earthquakes", Proceedings of the 3rd International Conference on Seismology and Earthquake Engineering, Tehran, Iran (1999).
45. Ghodrati Amiri, G.h., Mahdavian, A., and Dana, F.M. Attenuation relationships for Iran", Journal of Earthquake Engineering, 11(4), pp. 469-492 (2007).
46. Kijko, A. Estimation of the maximum earthquake magnitude, m max", Pure and Applied Geophysics, 161(8), pp. 1655-1681 (2004). 272 M. Saa_zaadeh and M.H. Bagheripour/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 257{272
47. Abrahamson, N. and Silva, W. Summary of the Abrahamson & Silva NGA ground-motion relations", Earthquake Spectra, 24(1), pp. 67-97 (2008).
48. Cornell, C.A. Engineering seismic risk analysis", Bulletin of the Seismological Society of America, 58(5), pp. 1583-1606 (1968).
49. Bagheripour, M.H., Shooshpasha, I., and Afzalirad, M. A genetic algorithm approach for assessing soil liquefaction potential based on reliability method", Journal of Earth System Science, 121(1), pp. 45-62 (2012).
50. Ordaz, M., Aguilar, A., and Arboleda, J. CRISIS2007: Program for Computing Seismic Hazard, National Autonomous University of Mexico, Mexico (2007).
51. Ouria, A., Desai, C.S., and Toufigh, V. Disturbed state concept-based solution for consolidation of plastic clays under cyclic loading", International Journal of Geomechanics, ASCE., 15(1), 04014039 (2013).
52. Toufigh, V., Desai, C.S., Saadatmanesh, H., Toufigh, V., Ahmari, S., and Kabiri, E. Constitutive modeling and testing of interface between backfill soil and fiberreinforced polymer", International Journal of Geomechanics, ASCE, 14(3), 04014009 (2013).
53. Kianfar, E. and Toufigh, V. Reliability analysis of rammed earth structures", Construction and Building Materials, 127, pp. 884-895 (2016).
54. Bazrafshan Moghaddam, A., and Bagheripour, M.H. Ground response analysis using non-recursive matrix implementation of hybrid frequency-time domain (HFTD) approach", Scientia Iranica, 18(6), pp. 1188- 1197 (2011).
55. Bazrafshan Moghaddam, A. and Bagheripour, M.H. Earthquake time-frequency analysis using a new compatible wavelet function family", Earthquakes and Structures (Techno-Press), 3(6), pp. 839-852 (2012).
56. Sa_arian, M.A. and Bagheripour, M.H. Seismic response analysis of layered soils considering e_ect of surcharge mass using HFTD approach. Part I: Basic formulation and linear HFTD", Geomechanics and Engineering (Techno-Press), 6(6), pp. 517-530 (2014).
57. Saffarian, M.A. and Bagheripour, M.H. Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples", Geomechanics and Engineering (Techno-Press), 6(6), pp. 531-544 (2014).
Volume 26, Issue 1
Transactions on Civil Engineering (A)
January and February 2019
Pages 257-272
  • Receive Date: 25 April 2017
  • Revise Date: 01 July 2017
  • Accept Date: 31 July 2017