Wall and bed shear force in rectangular open channels

Authors

1 - Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, USA. - Department of Civil and Environmental Engineering, Amirkabir University of Technology, 424 Hafez St., Tehran, Iran

2 Department of Civil and Environmental Engineering, Amirkabir University of Technology, 424 Hafez St., Tehran, Iran

Abstract

This paper studies the effects of velocity gradients and secondary currents on distribution of the shear force between the walls and bed of rectangular open channels. We show that neglecting the effect of secondary currents and assuming zero-shear division lines does not yield acceptable results. We, accordingly, introduce a method to determine the percentage of the total shear force acting on the walls and bed of rectangular open channels, which takes both the velocity gradients and secondary currents into account. Using the channel bisectors, along which there is no secondary flows effect, and orthogonal trajectories to isovels, along which there is no shear stress, we divide the channel cross-section into three major subsections, namely bed area, wall area, and shared area. The geometry of each subsection is derived given the location of the maximum velocity. The share of the bed and wall shear forces from the shared area are calculated afterward. The results for bed and walls shear forces agree with the experimental data with an average relative error less than 5% for regular flows and flows carrying suspended sediment. This method also provides a physics-driven range for the wall and bed shear forces which nicely covers the experimental data.

Keywords

Main Subjects


References
1. Hamedi, A. and Ketabdar, M. Energy loss estimation
and
ow simulation in the skimming
ow regime of
stepped spillways with inclined steps and end sill: A
numerical model", Int. J. Sci. Eng. Appl., 5(7), pp.
399-407 (2016).
2. Bardestani, S., Givehchi, M., Younesi, E., Sajjadi,
S., Shamshirband, S., and Petkovic, D. Predicting
turbulent
ow friction coecient using ANFIS technique",
Signal, Image Video Process, 11(2), pp. 341-
347 (2017).
3. Khozani, Z.S., Bonakdari, H., and Zaji, A.H. Application
of a soft computing technique in predicting the
percentage of shear force carried by walls in a rectangular
channel with non-homogeneous roughness", Water
Sci. Technol., 73(1), pp. 124-129 (2016).
3040 S. Tavakkol and A.R. Zarrati/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 3030{3041
4. Khozani, Z.S., Bonakdari, H., and Zaji, A.H. Application
of a genetic algorithm in predicting the percentage
of shear force carried by walls in smooth rectangular
channels", Measurement, 87, pp. 87-98 (2016).
5. Sheikh, Z. and Bonakdari, H. Prediction of boundary
shear stress in circular and trapezoidal channels with
entropy concept", Urban Water J., 13(6), pp. 629-636
(2016).
6. Guo, J. and Julien, P.Y. Shear stress in smooth
rectangular open-channel
ows", J. Hydraul. Eng.,
131(1), pp. 30-37 (2005).
7. Termini, D. Momentum transport and bed shear
stress distribution in a meandering bend: Experimental
analysis in a laboratory
ume", Adv. Water
Resour., 81, pp. 128-141 (2015).
8. Yang, S.-Q. and Lim, S.-Y. Mechanism of energy
transportation and turbulent
ow in a 3D channel",
J. Hydraul. Eng., 123(8), pp. 684-692 (1997).
9. Heydari, H., Zarrati, A.R., and Tabarestani, M.K.
Bed form characteristics in a live bed alluvial channel",
Sci. Iran. Trans. A, Civ. Eng., 21(6), pp. 1773
(2014).
10. Cheng, N.-S. and Chua, L.H. Comparisons of sidewall
correction of bed shear stress in open-channel
ows",
J. Hydraul. Eng., 131(7), pp. 605-609 (2005).
11. Guo, J. and Julien, P.Y. Boundary shear stress in
smooth rectangular open-channels", In Advances in
Hydraulics and Water Engineering, Proc. 13th IAHRAPD
Congress, pp. 76-86 (2002).
12. Leighly, J.B., Toward a Theory of the Morphologic
Signi cance of Turbulence in the Flow of Water in
Streams, University of California Press (1932).
13. Chiu, C.-L. and Chiou, J.-D. Structure of 3-D
ow in
rectangular open channels", J. Hydraul. Eng., 112(11),
pp. 1050-1067 (1986).
14. Yang, S.-Q. Interactions of boundary shear stress,
secondary currents and velocity", Fluid Dyn. Res.,
36(3), pp. 121-136 (2005).
15. Einstein, H.A. Formulas for the transportation of bed
load", Trans. ASCE Pap., 2140, pp. 561-597 (1942).
16. Keulegan, G.H., Laws of Turbulent Flow in Open
Channels, National Bureau of Standards US (1938).
17. Schlichting, H. Experimental investigation of the
problem of surface roughness", Ingenieur-Archiv, 7(1),
pp. 1-34 (1937).
18. Nezu, I. and Nakagawa, H. Turbulence in openchannel

ows", Vol. Monograph Series, Balkema, Rotterdam:
International Association for Hydraulic Research
(1993).
19. Henderson, F.M., Open Channel Flow, Macmillan
(1996).
20. Maghrebi, M.F. and Rahimpour, M. A simple model
for estimation of dimensionless isovel contours in open
channels", Flow Meas. Instrum., 16(6), pp. 347-352
(2005).
21. Houjou, K. and Ishii, C. Calculation of boundary
shear stress INi open channel
ow", J. Hydrosclence
Hydraul. Eng., 8(2), pp. 21-23 (1990).
22. De Cacqueray, N., Hargreaves, D.M., and Morvan,
H.P. A computational study of shear stress in smooth
rectangular channels", J. Hydraul. Res., 47(1), pp. 50-
57 (2009).
23. Bonakdari, H., Larrarte, F., Lassabatere, L., and Joannis,
C. Turbulent velocity pro le in fully-developed
open channel
ows", Environ. Fluid Mech., 8(1), pp.
1-17 (2008).
24. Nezu, I. and Rodi, W. Open-channel
ow measurements
with a laser Doppler anemometer", J. Hydraul.
Eng., 112(5), pp. 335-355 (1986).
25. Wang, X., Wang, Z.-Y., Yu, M., and Li, D. Velocity
pro le of sediment suspensions and comparison of loglaw
and wake-law", J. Hydraul. Res., 39(2), pp. 211-
217 (2001).
26. Chiu, C.-L. and Hsu, S.-M. Probabilistic approach to
modeling of velocity distributions in
uid
ows", J.
Hydrol., 316(1), pp. 28-42 (2006).
27. Yang, S.-Q., Tan, S.-K., and Lim, S.-Y. Velocity
distribution and dip-phenomenon in smooth uniform
open channel
ows", J. Hydraul. Eng., 130(12), pp.
1179-1186 (2004).
28. Knight, D.W., Demetriou, J.D., and Hamed, M.E.
Boundary shear in smooth rectangular channels", J.
Hydraul. Eng., 110(4), pp. 405-422 (1984).
29. Gessner, F.B. and Jones, J.B. On some aspects of
fully-developed turbulent
ow in rectangular channels",
J. Fluid Mech., 23(04), pp. 689-713 (1965).
30. Tominaga, A., Nezu, I., Ezaki, K., and Nakagawa,
H. Three-dimensional turbulent structure in straight
open channel
ows", J. Hydraul. Res., 27(1), pp. 149-
173 (1989).
31. Zheng, Y. and Jin, Y.-C. Boundary shear in rectangular
ducts and channels", J. Hydraul. Eng., 124(1),
pp. 86-89 (1998).
32. Jin, Y.-C., Zarrati, A.R. and Zheng, Y. Boundary
shear distribution in straight ducts and open channels",
J. Hydraul. Eng., 130(9), pp. 924-928 (2004).
33. Cru , R.W. Cross-channel transfer of linear momentum
in smooth rectangular channels", No. 1592-B.
USGPO (1965).
34. Ghosh, S.N. and Roy, N. Boundary shear distribution
in open channel
ow", J. Hydraul. Div., 96(HY4),
Proc. Paper 7241, pp. 967-994 (1970).
35. Kartha, V.C. and Leutheusser, H.J. Distribution of
tractive force in open channels", J. Hydraul. Div.,
96(HY 7), Proc. Paper 7415, pp. 1469-1483 (1970).
36. Knight, D.W. and Macdonald, J.A. Hydraulic resistance
of arti cial strip roughness", J. Hydraul. Div.,
105(6), pp. 675-690 (1979).
37. Knight, D.W. and Macdonald, J.A. Open channel

ow with varying bed roughness", J. Hydraul. Div.,
105(9), pp. 1167-1183 (1979).
S. Tavakkol and A.R. Zarrati/Scientia Iranica, Transactions A: Civil Engineering 25 (2018) 3030{3041 3041
38. Knight, D.W. Boundary shear in smooth and rough
channels", J. Hydraul. Div., 107(7), pp. 839-851
(1981).
39. Myers, W.R.C. Momentum transfer in a compound
channel", J. Hydraul. Res., 16(2), pp. 139-150 (1978).
40. Seckin, G., Seckin, N., and Yurtal, R. Boundary shear
stress analysis in smooth rectangular channels", Can.
J. Civ. Eng., 33(3), pp. 336-342 (2006).
41. Xie, Q. Turbulent
ows in non-uniform open channels:
experimental measurements and numerical modelling",
PhD Thesis, Department of Civil Engineering,
The University of Queensland (1998).
42. Chanson, H. Boundary shear stress measurements
in undular
ows: Application to standing wave bed
forms", Water Resour. Res., 36(10), pp. 3063-3076
(2000).
43. Coleman, N.L. E ects of suspended sediment on the
open-channel velocity distribution", Water Resour.
Res., 22(10), pp. 1377-1384 (1986).
44. Lyn, D.A. Turbulence and turbulent transport
in sediment-laden open-channel
ows", Dissertation
(Ph.D.), California Institute of Technology (1987).
45. Lyn, D.A. Regression residuals and mean pro les
in uniform open-channel
ows", J. Hydraul. Eng.,
126(1), pp. 24-32 (2000).
46. Muste, M. and Patel, V.C. Velocity pro les for particles
and liquid in open-channel
ow with suspended
sediment", J. Hydraul. Eng., 123(9), pp. 742-751
(1997).
47. Coleman, N.L. Velocity pro les with suspended sediment",
J. Hydraul. Res., 19(3), pp. 211-229 (1981).
48. Knight, D.W., Omran, M., and Tang, X. Modeling
depth-averaged velocity and boundary shear in trapezoidal
channels with secondary
ows", J. Hydraul.
Eng., 133(1), pp. 39-47 (2007).
49. Knight, D.W. and Sterling, M. Boundary shear in
circular pipes running partially full", J. Hydraul. Eng.,
126(4), pp. 263-275 (2000).
50. Tang, X. and Knight, D.W. Lateral depth-averaged
velocity distributions and bed shear in rectangular
compound channels", J. Hydraul. Eng., 134(9), pp.
1337-1342 (2008).
51. Yang, K., Cao, S., and Knight, D.W. Flow patterns
in compound channels with vegetated
oodplains", J.
Hydraul. Eng., 133(2), pp. 148-159 (2007).
Volume 25, Issue 6
Transactions on Civil Engineering (A)
November and December 2018
Pages 3030-3041
  • Receive Date: 14 September 2016
  • Revise Date: 12 January 2017
  • Accept Date: 18 April 2017