A One-Parameter Controlled Dissipative Unconditionally Stable Explicit Algorithm for Time History Analysis

Document Type : Article

Authors

Department of Civil Engineering , National Taipei University of Technology

Abstract

A new family of one-step integration methods is presented herein. A free parameter is used to control the numerical properties and it can be considered as an indicator of numerical dissipation for the high frequency modes. This family method can have unconditional stability, explicit formulation and desired numerical damping, which implies that the low frequency modes can be accurately integrated while the spurious growth of high frequency modes can be suppressed or even eliminated. In addition, a zero damping ratio can be achieved. Since the unconditional stability and explicit formulation are integrated together for the proposed family method, it can drastically reduce the computational efforts when compared to the traditional integration methods.

Keywords

Main Subjects


Volume 24, Issue 5
Transactions on Civil Engineering (A)
September and October 2017
Pages 2307-2319
  • Receive Date: 09 December 2015
  • Revise Date: 12 May 2016
  • Accept Date: 25 July 2016