Wide-band modeling of modular multilevel converters using extended-frequency dynamic phasors

Authors

Department of Electrical and Computer Engineering, University of Manitoba,75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada

Abstract

This paper presents a model for a Modular Multilevel Converter (MMC) using extended-frequency dynamic phasors. The model is based upon a series of harmonicfrequency representations that are obtained for the fundamental and dominant harmonic components. Depending on the requirements of the study to be conducted and the desired level of model accuracy, a low-order model (i.e., average-value) or an arbitrarily wideband model may be constructed. The paper describes the principles of modeling using extended-frequency dynamic phasors, and applies them to an MMC connected to a power system represented using a Thevenin equivalent. The model contains details of the MMC's control system including its high-level control circuitry, as well as voltage balancing and synchronization components. The developed model is then validated by comparing it against a fully-detailed electromagnetic transient (EMT) simulation model developed in PSCAD/EMTDC simulator. Comparisons are made to establish the accuracy of the model (both its low-order and wide-band variants) and to assess the computational advantages it o ers compared to conventional EMT models.

Keywords


Volume 23, Issue 6 - Serial Number 6
Transactions on Computer Science & Engineering and Electrical Engineering (D)
December 2016
Pages 2881-2890
  • Receive Date: 26 December 2016
  • Revise Date: 21 December 2024
  • Accept Date: 27 July 2017