Numerical and analytical approaches for improving the die design in the radial forging process of tubes without mandrel

Author

Mechanical Engineering Department, Babol University of Technology, Babol, Iran

Abstract

Radial forging without a mandrel offers a cost effective method for production of tubular components. However, nonuniform deformation, thickness variation, poor surface quality and undesirable residual stress distribution are the problems which should be overcome in order to achieve an optimal process. In this paper, radial forging dies with curved-shape profiles are proposed to alleviate some of the mentioned difficulties. Finite element simulations are used to prove the advantage of the proposed dies over the conventional linear dies. A novel analytical approach based on the slab method of analysis is developed to verify the finite element modeling. The obtained results provide useful guidelines for design and optimization of the radial forging process without mandrel.

Keywords


Volume 23, Issue 1 - Serial Number 1
Transactions on Mechanical Engineering (B)
February 2016
Pages 167-173
  • Receive Date: 26 April 2015
  • Revise Date: 21 December 2024
  • Accept Date: 27 July 2017