A Numerical Comparison of 2-D Inviscid and Viscous Approaches for Flow Through a Stage of an Axial Compressor

Author

Department of Mechanical Engineering,Sharif University of Technology

Abstract

In this paper, an unsteady, two-dimensional solver is developed, based on Van Leer's flux splitting algorithm, in conjunction with the ``Monotonic Upstream Scheme for Conservation Laws (MUSCL)'' limiters for improving the order of accuracy. For a minimum usage of computer memory and faster convergence, the two-layer Baldwin-Lomax turbulence model is implemented for a viscous solution. Three test cases are prepared to validate the solver. The computed results are compared with experimental data and the good agreement of the compared results validates the solver. Finally, the solver is used for the flow through a multi-blade stage of an axial compressor in its design condition. The solutions of inviscid and viscous flows are prepared and the computed results are compared with each other, to show the accuracy of an inviscid approach, with respect to the viscous flow at the design operating point. The comparison shows that the viscous approach is more acceptable.

Volume 11, Issue 1 - Serial Number 1
Transactions on Civil Engineering (A)
March and April 2004
  • Receive Date: 02 May 2006
  • Revise Date: 21 December 2024
  • Accept Date: 30 June 2004