Hydrodesulfurization of gas condensate containing di-sulfide oil: Catalyst synthesis and evaluation

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.

2 Research Institute of Petroleum Industry (RIPI), Tehran, Iran.

10.24200/sci.2024.60760.6975

Abstract

In this research, a catalyst based on design parameters of molybdenum percentage, Co/Mo and Urea/Co ratios by applying the Response Surface Methodology (RSM) was synthesized, characterized and optimized for the Hydrodesulfurization (HDS) process. The catalyst decreased sulfur content in the gas condensate from 2200 to 19 ppm wt. Then, various operating conditions such as temperature range of 320-340°C, reactor pressure range of 30-40 barg, Liquid Hourly Space Velocity (LHSV) range of 2-3h-1 and H2/Oil ratio range of 150-250 ml/ml were applied. Finally, the sulfur content in the gas condensate was found at 8 ppm wt. (<10 ppm wt.) at the optimum operating conditions when the synthesized catalyst with characteristics of 18% MoO3, Co/Mo molar ratio of 0.48 and Urea/Co volume ratio of 5 was used.

Keywords

Main Subjects


References:
1. Carr, E.W. and Corbett, J.J. “Ship compliance inemission control areas: Technology costs and policyinstruments”, Environmental Science and Technology,49(16), pp. 9584-9591 (2015). https://doi.org/10.1021/acs.est.5b02151
2. Van, T.C., Ramirez, J., Rainey, Th., et al. “Globalimpacts of recent IMO regulations on marine fuel oilrefining processes and ship emissions”,Transportation Research Part D: Transport andEnvironment, 70, pp. 123-134 (2019).https://doi.org/10.1016/j.trd.2019.04.001
3. Bhutto, A.W., Abro, R., Gao, Sh., et al. “Oxidative desulfurization of fuel oils using ionic liquids: A review”, Journal of the Taiwan Institute of Chemical Engineers, 62, pp. 84-97 (2016).https://doi.org/10.1016/j.jtice.2016.01.014
4. Shafiq, I., Shafique, S., Akhter P., et al. “Recentdevelopments in alumina supportedhydrodesulfurization catalysts for the production ofsulfur-free refinery products: A technicalreview”, Catalysis Reviews, 64(1), pp. 1-86 (2022).https://doi.org/10.1080/01614940.2020.1780824
5.Wang, X., Zhao, Zh., Zheng, P., et al. “Synthesis of NiMocatalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4, 6dimethyldibenzothiophene”, Journal of Catalysis, 344, pp. 680-69 (2016). https://doi.org/10.1016/j.jcat.2016.10.016
6. da Rocha Novaes, L., de Resende, N.S, Salim,V.M.M., et al. “Modeling, simulation and kineticparameter estimation for dieselhydrotreating”, Fuel, 209, pp. 184-193 (2017). https://doi.org/10.1016/j.fuel.2017.07.092
7. Wu, G., Yin, Y., Chen, W., et al. “Catalytic kinetics forultra-deep hydrodesulfurization of diesel”, ChemicalEngineering Science, 214, 115446 (2020). https://doi.org/10.1016/j.ces.2019.115446
8. Stanislaus, A., Marafi, A., and Rana M.S. “Recentadvances in the science and technology of Ultra-LowSulfur Diesel (ULSD) production”, CatalysisToday, 153(1-2), pp. 1-68 (2010). https://doi.org/10.1016/j.cattod.2010.05.011
9. Mei, H., Mei, B.W., and Yen, T.F. “A new method forobtaining ultra-low sulfur diesel fuel via ultrasoundassisted oxidative desulfurization”, Fuel, 82(4), pp.405-414 (2003). https://doi.org/10.1016/S0016-2361(02)00318-6
10. Kumar, S., Srivastava, V.C., and Nanoti Sh.M.“Extractive desulfurization of gas oils: A perspectivereview for use in petroleum refineries”, Separationand Purification Reviews, 46(4), pp. 319-347 (2017). https://doi.org/10.1080/15422119.2017.1288633
11. El-Gendy, N.S. and Speight, J.G. Handbook ofrefinery desulfurization, 140, CRC Press (2015).
12. Javadli, R. and Klerk, A.De. “Desulfurization of heavyoil”, Applied Petrochemical Research, 1(1), pp. 3-19(2012). https://doi.org/10.1007/s13203-012-0006-6
13. Jumina, Kurniawan, Y.S., Purwono B., et al. “Scienceand technology progress on the desulfurizationprocess of crude oil”, Bulletin of the Korean ChemicalSociety, 42(8), pp. 1066-1081 (2021). https://doi.org/10.1002/bkcs.12342
14. Khadim, A.T., Albayati, T.M., and Cata Saady, N.M.“Desulfurization of actual diesel fuel onto modifiedmesoporous material Co/MCM-41”, EnvironmentalNanotechnology, Monitoring and Management, 17,100635 (2022). https://doi.org/10.1016/j.enmm.2021.100635
15. Tanimu, A. and Alhooshani, K. “Advancedhydrodesulfurization catalysts: A review of design andsynthesis”, Energy and Fuels, 33(4), pp. 2810-2838(2019).https://doi.org/10.1021/acs.energyfuels.9b00354
16. Al-Zeghayer, Y.S. and Jibril, B.Y. “Kinetics ofhydrodesulfurization of dibenzothiophene on sulfided commercial Co-Mo/γ-Al2O3 catalyst”, The Journal of Engineering Research, 3(1), pp. 38-42 (2006). https://doi.org/10.24200/tjer.vol3iss1pp38-42
17. Yunusov, M.P., Saidaxmedov, Sh.M., Djalаlova,Sh.B., et al. “Synthesis and study of Ni-Mo-Cocatalysts for hydroprocessing of oilFractions”, Catalysis for Sustainable Energy, 2(1), pp.43-56 (2015). https://doi.org/10.1515/cse-2015-0003
18. Nikulshin, P.A., Mozhaev, A.V., Pimerzin A.A., et al.“CoMo/Al2O3 catalysts prepared on the basis ofCo2Mo10-heteropolyacid and cobalt citrate: Effect ofCo/Mo ratio”, Fuel, 100, pp. 24-33 (2012).https://doi.org/10.1016/j.fuel.2011.11.028
19. Ancheyta, J. and Speight, J.G. Hydroprocessing ofHeavy oils and Residua, CRC press (2007).https://doi.org/10.1201/9781420007435
20. Topsøie, H., Candia, R., Topsøe N.Y., et al. “On thestate of the Co-MO-S model”, Bulletin des SociétésChimiques Belges, 93(8-9), pp. 783-806 (1984).https://doi.org/10.1002/bscb.19840930820
21. Sánchez-Delgado, R.A. Hydrodesulfurization andHydrodenitrogenation, Springer Netherlands 2002.
22. Kidnay, A.J., Parrish, W.R. and Mc Cartney, D.C.Fundamentals of Natural Gas Processing, CRC press(2006). https://doi.org/10.1201/9781420014044
23. Shabani, M.R. and Royaee, S.J. “Technical andeconomic evaluation of separation of dimethyldisulfide from disulfide oil at liquefied petroleum gastreatment facilities of Assaluyeh gasrefinery”, Environmental Progress and SustainableEnergy, 38(6), e13270 (2019). https://doi.org/10.1002/ep.13270
24. Yamada, Sh., Qian, E.W., Ishihara, A., et al. “Methods of activating catalysts for hydrodesulfurization of light gas oil (Part 1) catalytic activity of CoMo/Al2O3 catalyst presulfided with polysulfides for hydrodesulfurization of dibenzothiophene”, Journal of the Japan Petroleum Institute, 44(4), pp. 217-224 (2001).https://doi.org/10.1627/jpi1958.44.217
25. Bose, D. “Design parameters for a Hydrodesulfurization (HDS) unit for petroleum naphtha at3500 barrels per day”, World Scientific News, 3, pp.99-111(2015).
26. da Rocha Novaes, L., de Resende, N.S., MartinsSalim, V.M., et al. “Modeling, simulation and kineticparameter estimation for diesel hydrotreating”, Fuel,209, pp. 184-193 (2017). https://doi.org/10.1016/j.fuel.2017.07.092
27.Elsayed, H.A., Ahmed, H.S., and Monufy, M.F.,“Upgrading of coker distillate under variablehydrotreating operating conditions”, Egyptian Journal of Petroleum, 20(2), pp. 25-31 (2011). https://doi.org/10.1016/j.ejpe.2011.06.001
28. Zhang, L., Chen, Zh., Zheng, Sh., et al. “Effect of theCo/Mo ratio on the morphology and activity of theCoMo catalyst supported on MgO nanosheets indibenzothiophene hydrodesulfurization”, Industrialand Engineering Chemistry Research, 59(27), pp.12338-12351 (2020). https://doi.org/10.1021/acs.iecr.0c00804
29.Zhang, C., Zhang, Y., Zhenget, H., et al. “Improving boththe activity and selectivity of CoMo/δ-Al2O3 byphosphorous modification for the hydrodesulfurizationof fluid catalytic cracking naphtha”, Energy andFuels, 36(7), pp. 3825-3834 (2022). https://doi.org/10.1021/acs.energyfuels.1c04164
30. González-Cortés, S.L., Xiao, T.C., Rodulfo-Baechler,S.M.A., et al. “Impact of the urea–matrix combustionmethod on the HDS performance of Ni-MoS2/γ-Al2O3 catalysts”, Journal of Molecular Catalysis A:Chemical, 240,1-2, pp. 214-225 (2005). https://doi.org/10.1016/j.molcata.2005.06.055
31. González-Cortés, S.L., Xiao, T.C., Costa, P.M.F.J., etal. “Urea–organic matrix method: An alternativeapproach to prepare Co MoS2/γ-Al2O3 HDS catalyst”,Applied Catalysis A: General, 270(1-2), pp. 209-222(2004).https://doi.org/10.1016/j.apcata.2004.05.006
32. Al-Megren, H., Huang, Y., Chen, H., et al. “Effect ofurea/metal ratio on the performance of NiMoP/Al2O3catalyst for diesel deep HDS”, Applied PetrochemicalResearch, 5(3), pp. 173-180 (2015). https://doi.org/10.1007/s13203-015-0098-x
33. González-Cortés, S.L., Xiao, T.C., Lin, T.W., et al.“Influence of double promotion on HDS catalystsprepared by urea-matrix combustionsynthesis”, Applied Catalysis A: General, 302(2), pp.264-273 (2006).https://doi.org/10.1016/j.apcata.2006.01.019
34. Van Haandel, L., Bremmer, G.M., Hensen, E.J.M., etal. “The effect of organic additives and phosphoricacid on sulfidation and activity of (Co) Mo/Al2O3hydrodesulfurization catalysts”, Journal ofCatalysis, 351, pp. 95-106 (2017).https://doi.org/10.1016/j.jcat.2017.04.012
35. Nikulshin, P. A., Mozhaev, A.V. Pimerzin, A.A., et al.“CoMo/Al2O3 catalysts prepared on the basis ofCo2Mo10-heteropolyacid and cobalt citrate: Effect ofCo/Mo ratio”, Fuel, 100, pp. 24-33 (2012).https://doi.org/10.1016/j.fuel.2011.11.028
36. Boukoberine, Y. and Boudjema, H. “Thiophenehydrodesulfurization over CoMo/Al2O3-CuYcatalysts: Temperature effect study”, Arabian Journalof Chemistry, 9, pp. S522-S527 (2016).https://doi.org/10.1016/j.arabjc.2011.06.018
37. Liu, Y., Wu, K., Guo, X.l., et al. “A comparison ofMoS2 catalysts hydrothermally synthesized fromdifferent sulfur precursors in their morphology andhydrodeoxygenation activity”, Journal of FuelChemistry and Technology, 46(5), pp. 535-542 (2018). https://doi.org/10.1016/S1872-5813(18)30023-9
38.Batra, N., Gope, J., Vandana, et al. “Influence ofdeposition temperature of thermal ALD depositedAl2O3 films on silicon surface passivation”, AIPAdvances, 5(6): 067113 (2015).https://doi.org/10.1063/1.4922267
39. Karim, A.M.A., Mohammed, A.H.A., and Areff, H.A.“Effect of operating conditions onhydrodesulfurization of vacuum gas oil”, DiyalaJournal of Engineering Sciences, 1(1), pp. 19-31(2008). https://doi.org/10.24237/djes.2008.01102
40. Jepsen, J.S. and Rase, H.F. “Effect of sulfidingtemperature on dispersion and chemical states of thecomponents of cobalt-molybdenum and nickel-molybdenum”, Industrial and Engineering ChemistryProduct Research and Development, 20(3), pp. 467-474 (1981). https://doi.org/10.1021/i300003a009
41. Torres-Mancera, P., Ancheyta, J., and Martínez, J.“Deactivation of a hydrotreating catalyst in a bench-scale continuous stirred tank reactor at differentoperating conditions”, Fuel, 234, pp. 326-334 (2018).https://doi.org/10.1016/j.fuel.2018.06.122
42. Silva, A.O., Monteiro, C.A.A., De Souza, V.P., et al.“Fluid dynamics and reaction assessment of diesel oilhydrotreating reactors via CFD”, Fuel ProcessingTechnology, 166, pp. 17-29 (2017).https://doi.org/10.1016/j.fuproc.2017.05.002
43. Pal, N., Verma, V., Khan, A., et al. “Hydrotreating andhydrodemetalation of raw jatropha oil usingmesoporous Ni-Mo/Ɣ-Al2O3 catalyst”, Fuel, 326, pp.125108(2022). https://doi.org/10.1016/j.fuel.2022.125108
Volume 32, Issue 9
Transactions on Chemical and Geoenergy Engineering
May and June 2025 Article ID:6975
  • Receive Date: 01 August 2022
  • Revise Date: 21 September 2023
  • Accept Date: 07 January 2024