References:
1.Infertility definitions and terminology. (2016, April 07,2019). Sexual and reproductive health. Retrieved 14December (2018).
2.Mascarenhas, M.N., Flaxman, S.R., Boerma, T., et al.“National, regional, and global trends in infertilityprevalence since 1990: A Systematic analysis of 277 healthsurveys” PLoS Medicine, 9(12), e1001356 (2012). https://doi.org/10.1371/journal.pmed.1001356
3.Bai, C.-F., Sun, J., Li, J., et al. “Gender differences in factors associated with depression in infertility patients” Journal ofAdvanced Nursing, 75(12), pp. 3515–3524 (2019).https://doi.org/10.1111/jan.14171
4.Figueira, J.R., Almeida-Dias, J., Matias, S., et al. “ElectreTri-C, a multiple criteria decision aiding sorting modelapplied to assisted reproduction,” International Journal ofMedical Informatics, 80(4), pp. 262–273 (2011). https://doi.org/10.1016/j.ijmedinf.2010.12.001
5.Mustafa, M., Sharifa, A.M., Hadi, J., et al. “Male andfemale infertility: Causes, and management” IOSR Journal of Dental and Medical Sciences, 18(9), pp. 27–32 (2019). https://doi.org/10.9790/0853-1809132732
6.Nagórska, M., Bartosiewicz, A., Obrzut, B., et al.“Gender differences in the experience of infertilityconcerning polish couples: Preliminary research”International Journal of Environmental Research andPublic Health, 16(13), 2337 (2019).https://doi.org/10.3390/ijerph16132337
7.Rouchou, B. “Consequences of infertility in developingcountries,” Perspectives in Public Health, 133(3), pp.174–179 (2013).https://doi.org/10.1177/1757913912472415
8.Gomathy, E., Radhika, K., Shivanagoud Patil, S., et al.“Knowledge and attitude of infertile couples attendingrural tertiary care centre” Indian Journal of Obstetricsand Gynecology Research, 7(2), pp. 177–181 (2020).https://doi.org/10.18231/j.ijogr.2020.037
9.Zarif Golbar Yazdi, H., Aghamohammadian Sharbaf, H., Kareshki, H., et al. “Infertility and psychological andsocial health of Iranian infertile women: A systematicreview,” Iranian Journal of Psychiatry, 15(1), pp. 67-79(2020). https://doi.org/10.18502/ijps.v15i1.2441
10.Nasim, S., Bilal, S., and Qureshi, M. “Psycho-socialaspects of infertility-a review of current trends” TheProfessional Medical Journal, 26(9), pp. 1537–1541(2019).https://doi.org/10.29309/tpmj/2019.26.09.4019
11.Hasanpoor-Azghdy, S.B., Simbar, M., and Vedadhi, A.“The social consequences of infertility among Iranianwomen: A qualitative study” International Journal ofFertility and Sterility, 8(4), pp. 409–420 (2015).https://doi.org/10.22074/ijfs.2015.4181
12.Shreffler, K.M., Gallus, K.L., Peterson, B., et al.“Couples and infertility” The Handbook of SystemicFamily Therapy, pp. 385–406 (2020).https://doi.org/10.1002/9781119438519.ch76
13.Chen, Sh., Wang, T., Zhang, S., et al. “Associationbetween infertility treatment and perinatal depressivesymptoms: A meta-analysis of observational studies”Journal of Psychosomatic Research, 120, pp. 110–117(2019). https://doi.org/10.1016/j.jpsychores.2019.03.016
14.Kononenko, I. “Machine learning for medical diagnosis:history, state of the art and perspective”, ArtificialIntelligence in Medicine, 23(1), pp. 89–109 (2001). https://doi.org/10.1016/s0933-3657(01)00077-x
15.AbdiShahshahani, M., Torabi, M., and Kazemi, A.“Investigating related factors to psychologicalsymptoms of infertile couples undergoing assistedreproductive treatment”, Directory of Open Access Journals, 9, p. 21 (2020). https://doi.org/10.4103/jehp.jehp_412_19
16.Saremi, A., Introduction to Infertility (2006).
17.Kaplan, B. “Evaluating informatics applications—clinical decision support systems literature review”,International Journal of Medical Informatics, 64(1), pp.15–37 (2001). https://doi.org/10.1016/s1386-5056(01)00183-6
18.Çomak, E., Arslan, A., and Türkoğlu, İ. “A decisionsupport system based on support vector machines fordiagnosis of the heart valve diseases”, Computers inBiology and Medicine, 37(1), pp. 21–27 (2007). https://doi.org/10.1016/j.compbiomed.2005.11.002
19.Barnato, A.E., Llewellyn-Thomas, H.A., Peters, E.M.,et al., “Communication and decision making in cancercare: Setting research priorities for decisionsupport/patients’ decision aids”, Medical DecisionMaking, 27(5), pp. 626–634 (2007).https://doi.org/10.1177/0272989x07306788
20.Belacel, N. “Multicriteria assignment methodPROAFTN: Methodology and medical application”,European Journal of Operational Research, 125(1), pp.175–183 (2000). https://doi.org/10.1016/s0377-2217(99)00192-7
21.Das, R., Turkoglu, I., and Sengur, A. “Effectivediagnosis of heart disease through neural networksensembles”, Expert Systems with Applications, 36(4),pp. 7675–7680 (2009).https://doi.org/10.1016/j.eswa.2008.09.013
22.Homaeinezhad, M.R., Tavakkoli, E., Afshar, A., et al.“Neuro-ANFIS architecture for ECG rhythm-typerecognition using different QRS geometrical-basedfeatures”, Iranian Journal of Electrical and ElectronicEngineering, 7(2), pp. 70–83 (2011). https://www.sid.ir/EN/VEWSSID/J_pdf/106520110201pdf
23.Jaspers, M.W.M., Vandenbos, C., Heinen, R.C., et al.“Development of a national protocol to screen Dutchcancer survivors on late cancer treatment effects”,International Journal of Medical Informatics, 76(4), pp.297–305 (2007).https://doi.org/10.1016/j.ijmedinf.2006.02.002
24.Jurisica, I., Mylopoulos, J., Glasgow, J., et al. “Case-based reasoning in IVF: prediction and knowledgemining”, Artificial Intelligence in Medicine, 12(1), pp.1–24 (1998). https://doi.org/10.1016/s0933-3657(97)00037-7
25.Lehtinen, J.-Ch., Forsström, J., Koskinen, P., et al.“Visualization of clinical data with neural networks,Case study: polycystic ovary syndrome”, InternationalJournal of Medical Informatics, 44(2), pp. 145–155(1997). https://doi.org/10.1016/s1386-5056(96)01265-8
26.Manna, C., Nanni, L., Lumini, A., et al. “Artificialintelligence techniques for embryo and oocyteclassification”, Reproductive BioMedicine Online,26(1), pp. 42–49 (Jan 2013).https://doi.org/10.1016/j.rbmo.2012.09.015
27.West, D., Mangiameli, P., Rampal, R., et al. “Ensemblestrategies for a medical diagnostic decision supportsystem: A breast cancer diagnosis application”,European Journal of Operational Research, 162(2), pp.532–551 (2005).https://doi.org/10.1016/j.ejor.2003.10.013
28.Yan, H., Jiang, Y., Zheng, J., et al. “A multilayerperceptron-based medical decision support system forheart disease diagnosis”, Expert Systems withApplications, 30(2), pp. 272–281 (2006).https://doi.org/10.1016/j.eswa.2005.07.022
29.Lashkari, A. and Firouzmand, M. “Developing a toolboxfor clinical preliminary breast cancer detection indifferent views of thermogram images using a set ofoptimal supervised classifiers”, Scientia Iranica, 25(3),pp. 1545-1560 (2017). https://doi.org/10.24200/sci.2017.4362
30.Rahimi Damirchi-Darasi, S., Fazel Zarandi, M.H.,Turksen, I.B., et al. “Type-2 fuzzy rule-based expertsystem for diagnosis of spinal cord disorders”, ScientiaIranica, 26(1), pp. 455-471 (2019).https://doi.org/10.24200/sci.2018.20228
31.Karimizadeh, A., Vali, M., and Modaresi, M.R.“Infection detection in cystic fibrosis patients based ontunable Q-factor wavelet transform of respiratory soundsignal and ensemble decision”, Scientia Iranica, 29(4),pp. 2014-2028 (2022).https://doi.org/10.24200/sci.2020.55468.4242
32.Moradi, M., Modarres, M., and Sepehri, M.M.,“Detecting factors associated with polypharmacy ingeneral practitioners’ prescriptions: A data miningapproach”, Scientia Iranica, 29(6), pp. 3489-3504 (2022).https://doi.org/10.24200/sci.2020.55569.4283
33.Abu-Naser, S.S. and Alhabbash, M.I. “Male infertilityexpert system diagnoses and treatment”, AmericanJournal of Innovative Research and Applied Sciences,2(4), pp. 181-192 (2016).
34.Desouza K.C. and Jacob, B. “Big data in the publicsector: Lessons for practitioners and scholars”,Administration and Society, 49(7), pp. 1043–1064(2014). https://doi.org/10.1177/0095399714555751
35.Letterie, G., MacDonald, A., and Shi, Z. “An artificialintelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions”, Reproductive BioMedicine Online, 44(2), pp. 254–260 (2022). https://doi.org/10.1016/j.rbmo.2021.10.006
36.Morris, G.C., Stewart, C.M.W., Schoeman, S.A., et al.“A cross-sectional study showing differences in theclinical diagnosis of pelvic inflammatory diseaseaccording to the experience of clinicians: implicationsfor training and audit”, Sexually Transmitted Infections,90(6), pp. 445–451 (2014). https://doi.org/10.1136/sextrans-2014-051646
37.Carraccio, C.L., Benson, B.J., Nixon, L.J., et al. “Fromthe educational bench to the clinical bedside:Translating the dreyfus developmental model to thelearning of clinical skills”, Academic Medicine, 83(8),pp. 761–767 (2008). https://doi.org/10.1097/acm.0b013e31817eb632
38.Eva, K.W. “What every teacher needs to know aboutclinical reasoning”, Medical Education, 39(1), pp. 98–106 (2005). https://doi.org/10.1111/j.1365-2929.2004.01972.x
39.Han, J., Kamber, M., and Pei, J., Data Mining: Conceptsand Techniques, Third Edition, Waltham: MorganKaufmann Publishers, pp. 1–38 (2012). https://doi.org/10.1016/b978-0-12-381479-1.00001-0
40.Wu, X., Kumar, V., and Ross Quinlan, J., et al. “Top 10algorithms in data mining”, Knowledge and InformationSystems, 14, pp. 1–37 (2007).https://doi.org/10.1007/s10115-007-0114-2
41.Field, A., Discovering Statistics using SPSS, SagePublications (2009).
42.Fonarow, G.C. “Risk stratification for in-hospitalmortality in acutely decompensated heart failureclassification and regression tree analysis”, JAMA,293(5), 572 (2005).https://doi.org/10.1001/jama.293.5.572