References:
1.Behnamian, J., Fatemi Ghomi, S.M.T., Jolai, F., et al.“Realistic two-stage flowshop batch scheduling problems with transportation capacity and time”, Applied MathematicalModelling, 36, pp. 723–735 (2012). https://doi.org/10.1016/ j.apm.2011.07.011.
2.Hillary, R. Environmental management systems and cleanerproduction, Wiley Toronto (1997).
3.Scarazzato, T., Panossian, Z., Tenório, J., et al. “A review ofcleaner production in electroplating industries usingelectrodialysis”, Journal of Cleaner Production, 168, pp.1590-1602 (2017). https://doi.org/10.1016/j.jclepro.2017.03.152.
4.Mokhtari, H. and Hasani, A. “A multi-objective model forcleaner production-transportation planning in manufacturingplants via fuzzy goal programming”, Journal ofManufacturing Systems, 44, pp. 230-242 (2017). https://doi.org/10.1016/j.jmsy.2017.06.002.
5.Jariwala, H.J., Syed, H.S., Pandya, M.J., et al. “Noise pollution& human health: A review”, Noise and Air Pollutions:Challenges and Opportunities. Ahmedabad: LD College of Engineering (2017). https://www.researchgate.net/publication/319329633_Noise_Pollution_Human_Health_A_Review.
6.Zhang, J., Ding, G., Zou, Y., et al. “Review of job shopscheduling research and its new perspectives under Industry4.0”, Journal of Intelligent Manufacturing, 30(4), pp. 1809-1830 (2019). https://doi.org/10.1007/s10845-017-1350-2.
7.Yazdani, M., Zandieh, M., and Tavakkoli-Moghaddam, R.“Evolutionary algorithms for multi-objective dual-resourceconstrained flexible job-shop scheduling problem”,OPSEARCH, 56(3), pp. 983-1006 (2019). https://doi.org/10.1007/s12597-019-00395-y.
8.Shen, L., Dauzère-Pérès, S., and Neufeld, J.S. “Solving theflexible job shop scheduling problem with sequence-dependent setup times”, European Journal of OperationalResearch, 265(2), pp. 503-516 (2018). https://doi.org/10.1016/j.ejor.2017.08.021.
9.de Oliveira Neto, G.C., Santana, J.C.C., Godinho Filho, M., etal. “Assessment of the environmental impact and economicbenefits of the adoption of cleaner production in a Brazilianmetal finishing industry”, Environmental Technology, 41(14),pp. 1814–1828 (2018). https://doi.org/10.1080/09593330.2018.1551426.
10.Rajaram, R., Jawahar, N., Ponnambalam, S., et al. “Multi-objective optimization of economic and environmental aspectsof a three-echelon supply chain”, In Industry 4.0 and Hyper-Customized Smart Manufacturing Supply Chains, pp. 127-158, IGI Global (2019). https://doi.org/10.4018/978-1-5225-9078-1.ch006.
11.Zarrouk, R., Bennour, I.E., and Jemai, A. “A two-level particle swarm optimization algorithm for the flexible job shopscheduling problem”, Swarm Intelligence, 13(2), pp. 145-168(2019). https://doi.org/10.1007/s11721-019-00167-w.
12.Amjad, M.K., Butt, S.I., Kousar, R., et al. “Recent researchtrends in genetic algorithm based flexible job shop schedulingproblems”, Mathematical Problems in Engineering, 2018, 9270802 (2018). https://doi.org/10.1155/2018/9270802.
13.Min, D., Dunbing, T., Adriana, G., et al. “Multi-objectiveoptimization for energy-efficient flexible job shop schedulingproblem with transportation constraints”, Robotics andComputer-Integrated Manufacturing, 59, pp. 143-157 (2019).https://doi.org/10.1016/j.rcim.2019.04.006.
14.Abedi, M., Chiong, R., Noman, N., et al. “A multi-population,multi-objective memetic algorithm for energy-efficient job-shop scheduling with deteriorating machines”, Expert Systemswith Applications, 157, pp. 1-33 (2020). https://doi.org/10.1016/j.eswa.2020.113348.
15.Li, X. and Gao, L. “An effective hybrid genetic algorithm andtabu search for flexible job shop scheduling problem”,International Journal of Production Economics, 174, pp. 93-110 (2016). https://doi.org/10.1016/j.ijpe.2016.01.016.
16.Kundakcı, N. and Kulak, O. “Hybrid genetic algorithms forminimizing makespan in dynamic job shop schedulingproblem”, Computers & Industrial Engineering, 96, pp. 31-51(2016). https://doi.org/10.1016/j.cie.2016.03.011.
17.AitZai, A., Benmedjdoub, B., Boudhar, M. “Branch-and-bound and PSO algorithms for no-wait job shop scheduling”,Journal of Intelligent Manufacturing, 27(3), pp. 679-688(2016). https://doi.org/10.1007/s10845-014-0906-7.
18.Wu, J., Wu, G., and Wang, J. “Flexible job-shop schedulingproblem based on hybrid ACO algorithm”, InternationalJournal of Simulation Modelling, 16(3), pp. 497-505 (2017).https://doi.org/10.2507/IJSIMM16(3)CO11.
19.Wang, L., Cai, J., Li, M., et al. “Flexible job-shop schedulingproblem using an improved ant colony optimization”,Scientific Programming, 2017, 9016303 (2017).https://doi.org/10.1155/2017/9016303.
20.Jamrus, T., Chien, C.-F., Gen, M., et al. “Hybrid particleswarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing timefor semiconductor manufacturing”, IEEE Transactions onSemiconductor Manufacturing, 31(1), pp. 32-41 (2017). https://doi.org/10.1109/TSM.2017.2758380.
21.Gong, X., Deng, Q., Gong, G., et al. “A memetic algorithm for multi-objective flexible job-shop problem with workerflexibility”, International Journal of Production Research,7(56), pp. 2506-2522 (2017). https://doi.org/10.1080/00207543.2017.1388933.
22.Peng, C., Fang, Y., Lou, P., et al. “Analysis of double resourceflexible job-shop scheduling problem based on geneticalgorithm”, 15th International Conference on Networking,Sensing and Control, pp. 1-6 (2018). https://doi.org/10.1109/ICNSC.2018.8361360.
23.Tamssaouet, K., Dauzère-Pérès, S., and Yugma, C. “Metaheuristics for the Job-Shop Scheduling Problem with Machine Availability Constraints”, Computers & IndustrialEngineering, 125, pp. 1-16 (2018). https://doi.org/10.1016/j.cie.2018.08.008.
24.Gong, G., Deng, Q., Chiong, R., et al. “An effective memeticalgorithm for multi-objective job-shop scheduling”,Knowledge-Based Systems, 182, pp. 1-14 (2019).https://doi.org/10.1016/j.knosys.2019.07.011.
25.Zhang, G., Hu, Y., Sun, J., et al. “An improved geneticalgorithm for the flexible job shop scheduling problem withmultiple time constraints”, Swarm and EvolutionaryComputation, 54, pp. 1-15 (2020). https://doi.org/10.1016/j.swevo.2020.100664.
26.Ding, H. and Gu, X. “Improved particle swarm optimizationalgorithm based novel encoding and decoding schemes forflexible job shop scheduling problem”, Computers andOperations Research, 121, pp. 1-15 (2020). https://doi.org/10.1016/j.cor.2020.104951.
27.Yang, D., Zhou, X., Yang, Zh., et al. “Multi-objective optimization model for flexible job shop scheduling problem consideringtransportation constraints: A comparative study”, IEEE Congresson Evolutionary Computation (CEC), pp. 1-18 (2020). https://doi.org/10.1109/CEC48606.2020.9185653.
28.Heydari, M. and Aazami, A. “Minimizing the maximumtardiness and makespan criteria in a job shop schedulingproblem with sequence dependent setup times”, Journal ofIndustrial and Systems Engineering, 11(2), pp. 134-150(2018). https://doi.org/10.1186/2251-712X-8-25.
29.Gao, K.-Z., Suganthan, P.N., Pan, Q.-K., et al. “Discreteharmony search algorithm for flexible job shop schedulingproblem with multiple objectives”, Journal of IntelligentManufacturing, 27(2), pp. 363-374 (2016). https://doi.org/10.1007/s10845-014-0869-8.
30.Ebrahimi, A., Jeon, H.W., Lee, S., et al. “Minimizing totalenergy cost and tardiness penalty for a scheduling-layoutproblem in a flexible job shop system: A comparison of fourmetaheuristic algorithms”, Computers and IndustrialEngineering, 141, 106295 (2020). https://doi.org/10.1016/j.cie.2020.106295.
31.Yazdani, M., Aleti, A., Khalili, S. M., et al. “Optimizing thesum of maximum earliness and tardiness of the job shopscheduling problem”, Computers & Industrial Engineering,107, pp. 12-24 (2017). https://doi.org/10.1016/j.cie.2017.02.019.
32.Yu, J.-M. and Lee, D.-H. “Solution algorithms to minimise the total family tardiness for job shop scheduling with jobfamilies”, European Journal of Industrial Engineering, 12(1),pp. 1-23 (2018). https://doi.org/10.1016/j.cie.2017.02.019.
33.Mendoza, A.M., Acosta, R.H., and Reyes, J.C. “Productionscheduling for a job shop using a mathematical model”,Methodology, 11(12), pp. 13 (2018). https://doi.org/10.12988/ces.2018.87335.
34.Sadaghiani, J., Boroujerdi, S., Mirhabibi, M., et al. “A paretoarchive floating search procedure for solving multi-objectiveflexible job shop scheduling problem”, Decision ScienceLetters, 3(2), pp. 157-168 (2014). https://doi.org/10.5267/j.dsl.2013.12.001.
35.Dalfard, V.M. and Mohammadi, G. “Two meta-heuristicalgorithms for solving multi-objective flexible job-shopscheduling with parallel machine and maintenanceconstraints”, Computers and Mathematics with Applications,64(6), pp. 2111-2117 (2012). https://doi.org/10.1016/j.camwa.2012.04.007.
36.Huang, S., Tian, N., Wang, Y., et al. “Multi-objective flexiblejob-shop scheduling problem using modified discrete particleswarm optimization”, SpringerPlus, 5(1), pp. 1432 (2016). https://doi.org/10.1186/s40064-016-3054-z.
37.Aurich, J.C., Yang, X., Schröder, S., et al. “Noise investigation in manufacturing systems: An acoustic simulation and virtualreality enhanced method”, CIRP Journal of ManufacturingScience and Technology, 5(4), pp. 337-347 (2012). https://doi.org/10.1016/j.cirpj.2012.09.010.
38.Behnamian, J., Zandieh, M., and Fatemi Ghomi, S.M.T. “Amulti-phase covering Pareto-optimal front method to multi-objective parallel machine scheduling”, International Journalof Production Research, 48(17), pp. 4949–4976 (2010).https://doi.org/10.1016/j.eswa.2009.02.080.
39.Behnamian, J., Fatemi Ghomi, S.M.T., Jolai, F., et al.“Minimizing makespan on a three-machine flowshop batchscheduling problem with transportation using geneticalgorithm”, Applied Soft Computing, 12, pp. 768-777 (2012).https://doi.org/10.1016/j.asoc.2011.10.015.
40.Ahmadi, E., Zandieh, M., Farrokh, M., et al. “A multi objective optimization approach for flexible job shop schedulingproblem under random machine breakdown by evolutionaryalgorithms”, Computers & Operations Research, 73, pp. 56-66 (2016). https://doi.org/10.1016/j.cor.2016.03.009.
41.Cuiyu, W., Yang, L., and Xinyu, L. “Solving flexible job shopscheduling problem by a multi-swarm collaborative geneticalgorithm”, Journal of Systems Engineering and Electronics,32(2), pp. 261-271 (2021).https://doi.org/10.23919/JSEE.2021.000023.
42.Ehtesham Rasi, R. “Optimization of the multi-objectiveflexible job shop scheduling model by applying NSGAII andNRGA algorithms”, Journal of Industrial Engineering andManagement Studies, 8(1), pp. 45-71 (2021). https://doi.org/10.22116/jiems.2021.170958.1244.
43.Lu, Y. and Jiang, T. “Bi-population based discrete batalgorithm for the low-carbon job shop schedulingproblem”, IEEE Access, 7, pp. 14513-14522 (2019).https://doi.org/10.1109/ACCESS.2019.2892826.