References:
1. Tlili, I., Shahmir, N., Ramzan, M., et al. “A novel model to analyze Darcy Forchheimer nanofluid flow in a permeable medium with Entropy generation analysis”, Journal of Taibah University for Science, 14(1), pp. 916-930 (2020). https://doi.org/10.1080/16583655.2020.1790171.
2. Khan, M.N. and Nadeem, S. “Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet”, Canadian Journal of Physics, 98(8), pp. 732-741 (2020). https://doi.org/10.1139/cjp-2019-0380.
3. Ramzan, M., Shahmir, N., and Ghazwani, H.A.S. “Mixed convective Casson partially ionized nanofluid flow amidst two inclined concentric cylinders with gyrotactic microorganisms”, Waves Random Complex Media, pp. 1-21 (2022). https://doi.org/10.1080/17455030.2022.2110623.
4. Nadeem, S., Khan, M.N., Muhammad, N., et al. “Mathematical analysis of bio-convective micropolar nanofluid”, Journal of Computational Design and Engineering, 6(3), pp. 233-242 (2019). https://doi.org/10.1016/j.jcde.2019.04.001.
5. Mondal, H., Mandal, A., and Tripathi, R. “Numerical investigation of the non-Newtonian power-law fluid with convective boundary conditions in a non-Darcy porous medium”, Waves Random Complex Media, pp. 1-17 (2022). https://doi.org/10.1080/17455030.2022.2123966.
6. Khan, M.N., Nadeem, S., and Muhammad, N. “Micropolar fluid flow with temperature‐dependent transport properties”, Heat Transfer, 49(4), pp. 2375- 2389 (2020). https://doi.org/10.1002/htj.21726.
7. Ahmad, S., Nadeem, S., Muhammad, N., et al. “Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects”, Journal of Thermal Analysis and Calorimetry, 143, pp. 1187- 1199 (2021). https://doi.org/10.1007/s10973-020- 09504-2.
8. Khan, M.N., Ullah, N., and Nadeem, S. “Transient flow of Maxwell nanofluid over a shrinking surface: Numerical solutions and stability analysis”, Surfaces and Interfaces, 22, 100829 (2021). https://doi.org/10.1016/j.surfin.2020.100829.
9. Ramzan, M., Ali, J., Shahmir, N., et al. “Thermophoretic particle deposition impact in the Oldroyd-B fluid flow influenced by a magnetic dipole with an exponential thermal heat source”, International Journal of Modern Physics B, 37(06), 2350059 (2023). https://doi.org/10.1142/S0217979223500595.
10. Kumar, A., Ray, R.K., and Sheremet, M.A. “Entropy generation on double-diffusive MHD slip flow of nanofluid over a rotating disk with nonlinear mixed convection and Arrhenius activation energy”, Indian Journal of Physics, 96, pp. 1-17 (2022). https://doi.org/10.1007/s12648-021-02015-2.
11. Ahmad, S., Khan, M.N., and Nadeem, S. “Mathematical analysis of heat and mass transfer in a Maxwell fluid with double stratification”, Physica Scripta, 96(2), 025202 (2020). https://doi.org/10.1088/1402-4896/abcb2a.
12. Krishna, M.V. and Chamkha, A.J. “Hall and ion slip impacts on unsteady MHD convective flow of Ag- TiO2/WEG hybrid nanofluid in a rotating frame”, Current Nanoscience, 19(1), pp. 15-32 (2023). https://doi.org/10.2174/157341371766621101811382.
13. Khan, U., Zaib, A., and Mebarek-Oudina, F. “Mixed convective magneto flow of SiO2–MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: Stability analysis”, Arabian Journal for Science and Engineering, 45, pp. 9061-9073 (2020). https://doi.org/10.1007/s13369-020-04680-7.
14. Vaidya, H., Rajashekhar, C., Mebarek-Oudina, F., et al. “Examination of chemical reaction on three dimensional mixed convective magnetohydrodynamic Jeffrey nanofluid over a stretching sheet”, Journal of Nanofluids, 11(1), pp. 113-124 (2022). https://doi.org/10.1166/jon.2022.1817.
15. Ramzan, M., Shaheen, N., Ghazwani, H.A.S., et al. “Application of Corcione correlation in a nanofluid flow on a bidirectional stretching surface with Cattaneo–Christov heat flux and heat generation/absorption”, Numerical Heat Transfer, Part A: Applications, 84(6), pp. 569-585 (2022). https://doi.org/10.1080/10407782.2022.2145396.
16. Khan, M.N., Nadeem, S., Ullah, N., et al. “Theoretical treatment of radiative Oldroyd-B nanofluid with microorganism pass an exponentially stretching sheet”, Surfaces and Interfaces, 21, 100686 (2020). https://doi.org/10.1016/j.surfin.2020.100686.
17. Pal, D., Das, B.C., and Vajravelu, K. “Magneto-Soret- Dufour thermo-radiative double-diffusive convection heat and mass transfer of a micropolar fluid in a porous medium with Ohmic dissipation and variable thermal conductivity”, Propulsion and Power Research, 11(1), pp. 154-170 (2022). https://doi.org/10.1016/j.jppr.2022.02.001.
18. Rafiq, M., Sajid, M., Alhazmi, S.E., et al. “MHD electroosmotic peristaltic flow of Jeffrey nanofluid with slip conditions and chemical reaction”, Alexandria Engineering Journal, 61(12), pp. 9977-9992 (2022). https://doi.org/10.1016/j.aej.2022.03.035.
19. Reddy, N.N., Reddy, Y.D., Rao, V.S., et al. “Multiple slip effects on steady MHD flow past a non-isothermal stretching surface in presence of Soret, Dufour with suction/injection”, International Communications in Heat and Mass Transfer, 134, 106024 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106024.
20. Gul, T., Khan, A., Bilal, M., et al. “Magnetic dipole impact on the hybrid nanofluid flow over an extending surface”, Scientific Reports, 10(1), 8474 (2020). https://doi.org/10.1038/s41598-020-65298-1.
21. Sarkar, A., Mondal, H., and Nandkeolyar, R. “Powelleyring fluid flow over a stretching surface with variable properties”, Journal of Nanofluids, 12(1), pp. 47-54 (2023). https://doi.org/10.1166/jon.2023.1908.
22. Chen, C.H. “Laminar mixed convection adjacent to vertical, continuously stretching sheets”, Heat Mass transfer, 33, pp. 471-476 (1998). https://doi.org/10.1007/s002310050217.
23. Ishak, A., Nazar, R., and Pop, I. “Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet”, Heat Mass Transfer, 44(8), pp. 921-927 (2008). https://doi.org/10.1007/s00231-007-0322-z.
24. Pal, D. and Mondal, H. “Soret and Dufour effects on MHD non-Darcian mixed convection heat and mass transfer over a stretching sheet with non-uniform heat source/sink”, Physica B, 407(4), pp. 642-651 (2012). https://doi.org/10.1016/j.physb.2011.11.051.
25. Bhukta, D., Dash, G.C., Mishra, S.R., et al. “Dissipation effect on MHD mixed convection flow over a stretching sheet through porous medium with non-uniform heat source/sink”, Ain Shams Engineering Journal, 8(3), pp. 353-361 (2017). https://doi.org/10.1016/j.asej.2015.08.017.
26. Mondal, H., Pal, D., Chatterjee, S., et al. “Thermophoresis and Soret-Dufour on MHD mixed convection mass transfer over an inclined plate with non-uniform heat source/sink and chemical reaction”, Ain Shams Engineering Journal, 9(4), pp.
2111-2121 (2018). https://doi.org/10.1016/j.asej.2016.10.015.
27. Wang, F., Khan, S.A., Gouadria, S., et al. “Entropy optimized flow of Darcy-Forchheimer viscous fluid with cubic autocatalysis chemical reactions”, International Journal of Hydrogen Energy, 47(29), pp. 13911-13920 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.141.