References:
1. Saranya, N., Pavithra, L., Kanthimathi, N., et al. "Detection of banana leaf and fruit diseases using neural networks", 2nd Int. Conf. on Inve. Res. Com., App., 202, pp. 493-499 (2020). DOI: 10.1109/ICIRCA48905.2020.9183006.
2. Amara, J., Bouaziz, B., and Algergawy, A. "A deep learning-based approach for banana leaf diseases classification", Datenbanksysteme fur Business, Technologie und Web (BTW 2017) - Workshopband. Bonn: Gesellschaft fur Informatik e.V.. PISSN: 1617- 5468, ISBN: 978-3-88579-660-2. pp. 79-88. Workshop Big (and small) Data in Science and Humanities (BigDS17). Stuttgart. 6.-10. Marz 2017.
3. Sinshaw, N.T., Assefa, B.G., Mohapatra, S.K., et al. "Applications of computer vision on automatic potato plant disease detection: A systematic literature review", Computational Intelligence and Neuroscience, 2022(1) (2022): Article ID 7186687. https://doi.org/10.1155/2022/7186687.
4. Sinshaw, N.T., Assefa, B.G., and Mohapatra, S.K. "Transfer learning and data augmentation based CNN model for potato late blight disease detection", Inter. Conf. on. Info. and. Comm. Tech. for. Deve. for. Afri. (2021). http://dx.doi.org/10.1109/ICT4DA53266.2021.9672243.
5. Eunice, J., Popescu, D.E., Chowdary, M.K., et al. "Deep learning-based leaf disease detection in crops using Images for agricultural applications", Agro., 12, p. 2395 (2022). https://doi.org/10.3390/agronomy12102395.
6. Li, L., Zhang, S., and Wang, B. "Plant disease detection and classification by deep learning-A review", IEEE. Acc., 9, pp. 56683-56698 (2021). http://dx.doi.org/10.1109/ACCESS.2021.3069646.
7. Liu, S., Qiao, Y,. Li, J., et al. "An improved lightweight network for real-time detection of apple leaf diseases in natural scenes", Agro., 12, p. 2363 (2022). https://doi.org/10.3390/agronomy12102363.
8. De Silva, M. and Brown, D. "Multispectral plant disease detection with vision transformer-convolutional neural network hybrid approaches", Sens., 23(20), p. 8531 (2023). https://doi.org/10.3390/s23208531.
9. Aggarwal, M., Khullar, V., Goyal, N., et al. "Federated transfer learning for rice-leaf disease classification across multiclient crosssilo datasets", Agro., 13(10), p. 2483 (2023) http://dx.doi.org/10.3390/agronomy13102483.
10. Simhadri, C.G. and Kondaveeti, H.K. "Automatic recognition of rice leaf diseases using transfer learning", Agro., 13(4), p. 961 (2023). http://dx.doi.org/10.3390/agronomy13040961.
11. Elbasi, E., Zaki, C., Topcu, A.E., et al. "Crop prediction model using machine learning algorithms", App. Sci., 13(16), p. 9288 (2023). http://dx.doi.org/10.3390/app13169288.
12. Domingues, T., Brand~ao, T. and Ferreira, J.C. "Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey", Agri., 12(9), p. 1350 (2022). http://dx.doi.org/10.3390/agriculture12091350.
13. Ferentinos, K.P. "Deep learning models for plant disease detection and diagnosis", Comp. and Elec. in Agri., 145, pp. 311-318 (2018). http://dx.doi.org/10.1016/j.compag.2018.01.009.
14. Chollet, F. "Deep learning mit python und keras: das praxis-handbuch vom entwickler der keras-bibliothek", MITP.Ver. GmbH. and Co. KG., (2018).
15. Teow, M.Y. "Understanding convolutional neural networks using a minimal model for handwritten digit recognition", 2nd. Inter. Conf. on Auto. Cont. and Inte. Syst., pp. 167-172 (2017). http://dx.doi.org/10.1109/I2CACIS.2017.8239052.
16. Patil, A. and Rane, M. "Convolutional neural networks: An overview and its applications in pattern recognition", Inter. Conf. on Infor. and Comm. Tech. for Inte. Sys. Sprin., pp. 21-30 (2020). http://dx.doi.org/10.1007/978-981-15-7078-0-3.
17. Khan, A., Sohail, A., Zahoora, U., et al. "A survey of the recent architectures of deep convolutional neural networks", Artif. Intel. Rev., 53(8), pp. 5455-5516 (2020). http://dx.doi.org/10.1007/s10462-020-09825-6.
18. Feurer, M. and Hutter, F. "Hyperparameter optimization", In Automated Machine Learning: Methods, Systems, Challenges, pp. 3-33 (2019). https://doi.org/10.1007/978-3-030- 05318-5 1.
19. Li, L., Jamieson, K., DeSalvo, G., et al. "Hyperband: A novel bandit-based approach to hyperparameter optimization", J. of Mach. L. Res., 18(185), pp. 1-52 (2017).
20. Bergstra, J., Bardenet, R., Bengio, Y., et al. "Algorithms for hyper-parameter optimization", Advances in Neural Information Processing Systems, 24, pp. 2546-2554 (2011). https://proceedings.neurips. cc/paper/2011.
21. Nguyen, V., Gupta, S., Rana, S., et al. "Filtering bayesian optimization approach in weakly specified search space", K. and Info. Sys., 60, pp. 385-413 (2019). http://dx.doi.org/10.1007/s10115- 018-1238-2.
22. Shahriari, B., Bouchard-Cote, A., and Freitas, N. "Unbounded bayesian optimization via regularization", In Arti. Intel. and St., pp. 1168-1176 (2016).
23. O'Malley, T., Bursztein, E., Long, Chollet.F., et al., "Kerastuner," (2019). https://github.com/kerasteam/ keras -tuner. (2019).