Extension of an adoption model to evaluate autonomous vehicles acceptance

Document Type : Article

Authors

1 Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran

2 Department of Civil, Geological and Mining Engineering, Polytechnique Montreal University, Montreal, P.O. Box 6079, Canada

Abstract

Autonomous Vehicles (AVs) can provide safe, clean and efficient mobility by using advanced communication technologies to create an unprecedented revolution in transportation. Acceptance of AVs has a key role in their successful implementation. Most researchers have used Technology Acceptance Model (TAM), Theory of Planned Behavior (TPB) and Unified Theory of Acceptance and Use of Technology (UTAUT) to identify latent factors affecting, which focus only on individuals' internal schema of beliefs without considering the external factors of acceptance. The current study, uses Trialability (TR), Observability (OB) extracted from Diffusion of Innovations (DOI) theory, Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI) extracted from UTAUT, as well as Perceived Risk (PR), Environmental Concerns (EC) and Consumer Innovativeness (CI)) to identify a wider set of latent factors. A stated preference survey conducted to this purpose in Tehran allowed collecting 641 responses. Considering the latent nature of research variables, Structural Equation Modeling is applied. Results show that PE, EE, PR, OB, SI, TR, CI and EC affect acceptance in decreasing order of regression weights, an explain 72.5% of the variance in the dependent variable..

Keywords

Main Subjects


References:
1. Ghaffari Targhi, M. "Factors influencing the use of autonomous and shared autonomous vehicles in alberta", Master's thesis, Graduate Studies (2017). DOI:10.1080/10548408.2018.1507866.
2. Cheein, F.A.A., De La Cruz, C., Bastos, T.F., et al. "Slam-based cross-a-door solution approach for a robotic wheelchair", International Journal of Advanced Robotic Systems, 6, pp. 239-248 (2009). DOI: 10.5772/7230.
3. Engelberg, J.K., Hill, L.L., Rybar, J., et al. "Distracted driving behaviors related to cell phone use among middle-aged adults", Journal of Transport and Health, 2, pp. 434-440 (2015) . DOI: 10.1016/j.jth.2015.05.002.
4. Fagnant, D.J. and Kockelman, K. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations", Transportation Research Part A: Policy and Practice, 77, pp. 167-181 (2015). DOI: 10.1016/j.tra.2015.04.003.
5. Piao, J., McDonald, M., Hounsell, N., et al. "Public views towards implementation of automated vehicles in urban areas", Transportation Research Procedia, 14, pp. 2168-2177 (2016). DOI: 10.1016/j.trpro.2016.05.232.
6. Anderson, J.M., Nidhi, K., Stanley, K.D., et al. "Autonomous vehicle technology: A guide for policymakers", Rand Corporation (2014). DOI:10.1080/10548408.2018.1507866.
7. Labi, S., Saeed, T.U., Volovski, M., et al. "An exploratory discussion of the impacts of driverless vehicle operations on the man-made environment", In 1st International Conference on Mechanical and Transportation Engineering, Kuala Lumpur, Malaysia (2015). DOI: 10.15282/jmes.18.2.2024.9.0796.
8. Meyer, J., Becker, H., Bosch, P.M., et al. "Autonomous vehicles: The next jump in accessibilities?", Research in Transportation Economics, 62, pp. 80-91 (2017). DOI: 10.1016/j.retrec.2017.03.005.
9. Acheampong, R.A. and Cugurullo, F. "Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars", Transportation Research Part F: Traffic Psychology and Behaviour, 62, pp. 349-375 (2019). DOI: 10.1016/j.trf.2019.01.009.
10. Liu, F., Zhao, F., Liu, Z., et al. "Can autonomous vehicle reduce greenhouse gas emissions? A countrylevel evaluation", Energy Policy, 132, pp. 462-473 (2019) . DOI: 10.1016/j.enpol.2019.06.013.
11. Severino, A., Curto, S., Barberi, S., et al. "Autonomous vehicles: An analysis both on their distinctiveness and the potential impact on urban transport systems", Appl. Sci., 11, 3604 (2021). DOI: 10.3390/app11083604.
12. Lee, J., Lee, D., Park, Y., et al. "Autonomous vehicles can be shared, but a feeling of ownership is important: Examination of the influential factors for intention to use autonomous vehicles", Transp. Res. Part C Emerg. Technol., 107, pp. 411-422 (2019). DOI: 10.1016/j.trc.2019.08.020.
13. Taherdoost, H. "Importance of technology acceptance assessment for successful implementation and development of new technologies", Global Journal of Engineering Sciences, 1, pp. 1-3 (2019). DOI: 10.33552/GJES.2019.01.000511.
14. Harst, L., Lantzsch, H., and Scheibe, M. "Theories predicting end-user acceptance of telemedicine use: systematic review", Journal of Medical Internet Research, 21, pp. 117-131 (2019). DOI: 10.2196/13117.
15. Thierer, A. "Technopanics, threat inflation, and the danger of an information technology precautionary principle", Minn. JL Sci. and Tech., 14, pp. 309-320 (2013). DOI:10.2139/SSRN.2012494.
16. Thierer, A. and Hagemann, R. "Removing roadblocks to intelligent vehicles and driverless cars", Mercatus Working Paper-Mercatus Center George Mason University Washington Vlvd, Virginia (2014). DOI: 10.2139/ssrn.2496929.
17. Smith, B.W. "SAE levels of driving automation", Center for Internet and Society", Stanford Law School (2013). http://cyberlaw. stanford. edu/blog/2013/12/sae-levels-drivingautomation DOI: 10.1016/j.jsr.2019.11.005.
18. Farzin, I., Mamdoohi, A.R., and Ciari, F. "Autonomous vehicles acceptance: A perceived risk extension of unified theory of acceptance and use of technology and diffusion of innovation, evidence from tehran, Iran", International Journal of Human- Computer Interaction, 15, pp. 1-10. (2022). DOI: 10.1080/10447318.2022.2083464.
19. Farzin, I., Abbasi, M., Macioszek, E., et al. "Moving toward a more sustainable autonomous mobility, case of heterogeneity in preferences", Sustainability, 15(1), pp. 460-475 (2023). DOI: 10.3390/su15010460.
20. Janatabadi, F. and Ermagun, A. "Empirical evidence of bias in public acceptance of autonomous vehicles", Transportation Research Part F: Traffic Psychology and Behavior, 84, pp. 330-347 (2022). DOI: 10.1016/j.trf.2021.12.005.
21. Ribeiro, M.A., Gursoy, D., and Chi, O.H. "Customer acceptance of autonomous vehicles in travel and tourism", Journal of Travel Research, 61(3), pp. 620- 636 (2022). DOI: 10.1177/0047287521993578.
22. Miller, K., Chng, S., and Cheah, L. "Understanding acceptance of shared autonomous vehicles among people with different mobility and communication needs", Travel Behaviour and Society, 29, pp. 200-210 (2022). DOI: 10.1016/j.tbs.2022.06.007.
23. Mara, M. and Kathrin M. "Acceptance of autonomous vehicles: An overview of user-specific, car-specific and contextual determinants", User Experience Design in the Era of Automated Driving, pp. 51-83 (2022). DOI: 10.1007/978-3-030-77726-5-3.
24. Gkartzonikas, C., Losada-Rojas, L.L., Christ, S., et al. "A multi-group analysis of the behavioral intention to ride in autonomous vehicles: evidence from three US metropolitan areas", Transportation, 50(2), pp. 1-41 (2022). DOI: 10.1007/s11116-021-10256-7.
25. McLeay, F., Olya, H., Liu, H., et al. "A multianalytical approach to studying customers motivations to use innovative totally autonomous vehicles", Technological Forecasting and Social Change, 174 (2022). DOI: 10.1016/j.techfore.2021.121252.
26. Chaveesuk, S., Chaiyasoonthorn, W., Kamales, N., et al. "Evaluating the determinants of consumer adoption of autonomous vehicles in Thailand-An Extended UTAUT model", Energies, 16(2) (2023). DOI: 10.3390/en16020855.
27. Jing, P., Xu, G., Chen, Y., et al. "The determinants behind the acceptance of autonomous vehicles: a systematic review", Sustainability, 12, pp. 1-26 (2020). DOI: 10.3390/su12051719.
28. Venkatesh, V., Thong, J.Y., and Xu, X. "Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology", MIS Quarterly, 36, pp. 157-178 (2012). DOI: 10.2307/41410412.
29. Taherdoost, H. "A review of technology acceptance and adoption models and theories", Procedia Manufacturing, 22, pp. 960-967 (2018). DOI: 10.1016/j.promfg.2018.03.137.
30. Rogers, E.M., Diffusion of Innovations, Simon and Schuster, Edition 5, 1, Chapter: 1-5 (2010). DOI:10.1080/10548408.2018.1507866.
31. Edrisi, A. and Ganjipour, H. "Exploring the acceptance of delivery robots by online buyers using diffusion of innovation theory and structural equation modeling", Amirkabir Journal of Civil Engineering, 54. pp. 14-24 (2022). DOI: 10.22060/CEEJ.2022.19258.7116.
32. Tao, T. and Jason C. "Examining motivations for flowning autonomous vehicles: Implications for land use and transportation", Journal of Transport Geography, 102 (2022). DOI: 10.1016/j.jtrangeo.2022.103361.
33. Xia, Z., Wu, D., and Zhang, L. "Economic, functional, and social factors influencing electric vehicles' adoption: An empirical study based on the diffusion of innovation theory", Sustainability, 14(10), pp. 62-83 (2022). DOI: 10.3390/su14106283.
34. Yuen, K.F., Wong, Y.D., Ma, F., et al. "The determinants of public acceptance of autonomous vehicles: An innovation diffusion perspective", Journal of Cleaner Production, 270, pp. 121904 (2020). DOI: 10.1016/j.jclepro.2020.121904.
35. Nordhoff, S., Malmsten, V., van Arem, B., et al. "A structural equation modeling approach for the acceptance of driverless automated shuttles based on constructs from the Unified Theory of Acceptance and Use of Technology and the Diffusion of Innovation Theory", Transportation Research Part F: Traffic Psychology and Behaviour, 78, pp. 58-73 (2021). DOI: 10.1016/j.trf.2021.01.001.
36. Venkatesh, V., Morris, M.G., Davis, G.B., et al. "User acceptance of information technology: Toward a unified view", MIS Quarterly, 27, pp. 425-478 (2003). DOI: 10.2307/30036540.
37. Ingeveld, M. "Usage intention of automated vehicles amongst elderly in the Netherlands", Master's thesis, Graduate Studies (2017). DOI: 10.1016/ 2020.01.022.
38. Leicht, T., Chtourou, A., and Youssef, K.B. "Consumer innovativeness and intentioned autonomous car adoption", The Journal of High Technology Management Research, 29, pp. 1-11 (2018). DOI: 10.1016/j.hitech.2018.04.001.
39. Madigan, R., Louw, T., Wilbrink, M., et al. "What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems", Transportation Research Part F: Traffic Psychology and Behaviour, 50, pp. 55-64 (2017). DOI: 10.1016/j.trf.2017.07.007.
40. Schierz, P.G., Schilke, O., and Wirtz, B.W. "Understanding consumer acceptance of mobile payment services: An empirical analysis", Electronic Commerce Research and Applications, 9, pp. 209-216 (2010). DOI: 10.1016/j.elerap.2009.07.005.
41. Martins, C., Oliveira, T., and Popovic, A. "Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application", International Journal of Information Management, 34, pp. 1-13 (2014). DOI: 10.1016/j.ijinfomgt.2013.06.002.
42. Ross, I. "Perceived risk and consumer behavior: a critical review", ACR North American Advances (1975). DOI: 10.1016/j.omega.2014.10.005.
43. Gueriau, M., Cugurullo, F., Acheampong, R.A., et al. "Shared autonomous mobility on demand: A learningbased approach and its performance in the presence of traffic congestion", IEEE Intell. Transp. Syst. Mag., 12, pp. 208-218 (2020). DOI: 10.1109/MITS.2020.3014417.
44. Campisi, T., Severino, A., Al-Rashid, M.A., et al. "The development of the smart cities in the Connected and Autonomous Vehicles (CAVs) era: From mobility patterns to scaling in cities", Infrastructures, 6, p. 100 (2021). DOI: 10.3390/infrastructures6070100.
45. Simko, D.J., Increasing Road Infrastructure Capacity through the Use of Autonomous Vehicles; Naval Postgraduate School: Monterey, C.A., USA (2016). DOI: 10.3141/2432-13.
46. Featherman, M.S. and Pavlou, P.A. "Predicting e-services adoption: a perceived risk facets perspective", International Journal of Human-Computer Studies, 59, pp. 451-474 (2003). DOI: 10.1016/S1071- 5819(03)00111-3.
47. Ko, H., Jung, J., Kim, J., et al. "Cross-cultural differences in perceived risk of online shopping", Journal of Interactive Advertising, 4, pp. 20-29 (2004). DOI: 10.1080/15252019.2004.10722084.
48. Zmud, J., Sener, I.N., and Wagner, J. "Consumer acceptance and travel behavior: impacts of automated vehicles", Texas AandM Transportation Institute (2016). DOI:10.1016/j.trpro.2017.05.281.
49. Liu, H., Yang, R., Wang, L., et al. "Evaluating initial public acceptance of highly and fully autonomous vehicles", International Journal of Human- Computer Interaction, 35, pp. 919-931 (2019). DOI: 10.1080/10447318.2018.1561791.
50. Yeung, S.P.M. "Teaching approaches in geography and students' environmental attitudes", Environmentalist, 24, pp. 101-117 (2004). DOI: 10.1007/s10669-004- 4801-1.
51. Rehman, Z.U. and Dost, M.K. "Conceptualizing green purchase intention in emerging markets: An empirical analysis on Pakistan", In The 2013 WEI International Academic Conference Proceedings, 1, pp. 101-112 (2013). DOI: 10.22555/pjets.v2i1.697.
52. Do Paco, A. and Raposo, M. "Green segmentation: an application to the Portuguese consumer market", Marketing Intelligence and Planning, 27, pp. 364-37 (2009). DOI: 10.1108/02634500910955245.
53. Ross, C. and Guhathakurta, S. "Autonomous vehicles and energy impacts: a scenario analysis", Energy Procedia, 143, pp. 47-52 (2017). DOI: 10.1016/j.egypro.2017.12.646.
54. Sreejesh, S. "Consumers' evaluation of brand extensions: An application of multiple-group causal models in assessing cross product category measurement equivalence", Southern Business Review, 36, pp. 1-23 (2011). DOI: 10.1177/002224299005400102.
55. Hirschman, E.C. "Innovativeness, novelty seeking, and consumer creativity", Journal of Consumer Research, 7, pp. 283-295 (1980). DOI: 10.1086/208816.
56. Xie, Y.H. "Consumer innovativeness and consumer acceptance of brand extensions", Journal of Product and Brand Management, DOI: 10.1108/10610420810887581.
57. Haboucha, C.J., Ishaq, R., and Shiftan, Y. "User preferences regarding autonomous vehicles", Transportation Research Part C: Emerging Technologies, 78, pp. 37-49 (2017). DOI: 10.1016/j.trc.2017.01.010.
58. Mueller, R.O. "Basic principles of structural equation modeling: An introduction to LISREL and EQS", Springer Science and Business Media, 14(2), 58 (1999). DOI: 10.1080/10548408.2018.1507866.
59. Hair, J.F. "Multivariate data analysis", Upper Saddle River, NJ [etc.]. Pearson Prentice Hall, New York, NY: Macmillan (2009). DOI: 10.4236/oalib.1106030.
60. Al-Gahtani, S.S. "Computer technology adoption in Saudi Arabia: Correlates of perceived innovation attributes", Information Technology for Development, 10, pp. 57-69 (2003). DOI: 10.1002/itdj.1590100106.
61. Mazzarol, T., and Reboud, S. "Adoption and diffusion of innovation", In Entrepreneurship and Innovation, Springer, Singapore (2020). DOI: 10.1007/978-981-13- 9412-6-6.
62. Choi, J.K., and Ji, Y.G. "Investigating the importance of trust on adopting an autonomous vehicle", International Journal of Human-Computer Interaction, 31, pp. 692-702 (2015). DOI: 10.1080/10447318.2015.1070549.
63. Liu, P., Yang, R., and Xu, Z. "Public acceptance of fully automated driving: Effects of social trust and risk/benefit perceptions", Risk Analysis, 39, pp. 326- 341 (2019). DOI: 10.1111/risa.13143.
64. Mohtar, S. and Abbas, M. "Consumer resistance to innovation due to perceived risk: Relationship between perceived risk and consumer resistances to innovation", Journal of Technology and Operations Management, 10, pp. 1-13 (2020). DOI: 10.32890/jtom2015.10.1.1.
65. Fransson, N. and Garling, T. "Environmental concern: Conceptual definitions, measurement methods, and research findings", Journal of Environmental Psychology, 19, pp. 369-382 (1999). DOI: 10.1006/jevp.1999.0141.
66. Gkartzonikas, C. and Gkritza, K. "What have we learned? A review of stated preference and choice studies on autonomous vehicles", Transportation Research Part C: Emerging Technologies, 98, pp. 323-337 (2019). DOI: 10.1016/j.trc.2018.12.003.
67. Roehrich, G. "Consumer innovativeness: Concepts and measurements", Journal of Business Research, 57, pp. 671-677 (2004). DOI: 10.1016/S0148-2963(02)00311-9.
68. Moore, G.C. and Benbasat, I. "Development of an instrument to measure the perceptions of adopting an information technology innovation", Information Systems Research, 2, pp. 192-222 (1991). DOI: 10.1287/isre.2.3.192.
69. Tran, T.C.T. and Cheng, M.S. "Adding innovation diffusion theory to technology acceptance model: Understanding consumers' intention to use biofuels in Viet Nam", International Review of Management and Business Research, 6(2), pp. 595-615 (2017). DOI:10.1080/ 2306-9007.
70. Yuen, K.F., Wang, X., Ng, L., et al. "An investigation of customers' intention to use self-collection services for last-mile delivery", Transport Policy, 66, pp. 1-8 (2018). DOI: 10.1016/j.tranpol.2018.03.001.
71. Osswald, S.,Wurhofer, D., Trvsterer, S., et al. "Predicting information technology usage in the car: towards a car technology acceptance model", In Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 51-58 (2012). DOI: 10.1145/2390256.2390264.
72. Min, S., So, K.K.F., and Jeong, M. "Consumer adoption of the Uber mobile application: Insights from diffusion of innovation theory and technology acceptance model", Journal of Travel and Tourism Marketing, 36, pp. 770-783 (2019).
DOI:10.1080/10548408.2018.1507866.
Volume 31, Issue 19
Transactions on Civil Engineering (A)
November and December 2024
Pages 1779-1792
  • Receive Date: 08 November 2021
  • Revise Date: 03 June 2023
  • Accept Date: 28 April 2024