References:
1. Chao, H., Zhi, H., Dong, L., et al. "Recognition of emotions using multichannel EEG data and DBNGC- based ensemble deep learning framework", Comput. Intell. Neurosci., 2018, pp. 1-11 (2018). DOI: 0.1155/2018/9750904.
2. Zheng, W.-L. and Lu, B.-L. "Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks", IEEE Trans. Auton. Ment. Dev., 7(3), pp. 162-175 (2015). DOI: 10.1109/TAMD.2015.2431497.
3. Duan, R.-N., Zhu, J.-Y., and Lu, B.-L. "Differential entropy feature for EEG-based emotion classification", 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, pp. 81-84 (2013). DOI: 10.1109/NER.2013.6695876.
4. Wang, F., Zhong, S., Peng, J., et al. "Data augmentation for EEG-based emotion recognition with deep convolutional neural networks", MultiMedia Modeling, 17, pp. 82-93 (2018). DOI: 10.1007/978-3-319-73600- 6_8.
5. Moon, S.-E., Jang, S., and Lee, J.-S. "Convolutional neural network approach for EEG-based emotion recognition using brain connectivity and its spatial information", 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, pp. 2556-2560 (2018). DOI: 10.1109/ICASSP.2018.8461315.
6. Song, T., Zheng, W., Song, P., et al. "EEG emotion recognition using dynamical graph convolutional neural networks", IEEE Trans. Affect. Comput., 11(3), pp. 532-541 (2020). DOI: 10.1109/TAFFC.2018.2817622.
7. Lin, Y.-P., Wang, C.-H., Jung, T.-P., et al. "EEGbased emotion recognition in music listening", IEEE Trans. Biomed. Eng., 57(7), pp. 1798-1806 (2010). DOI: 10.1109/TBME.2010.2048568.
8. Menting-Henry, S., Hidalgo-Lopez, E., Aichhorn, M., et al. "Oral contraceptives modulate the relationship between resting brain activity, amygdala connectivity and emotion recognition, A Resting State fMRI Study", Frontiers in Behavioral Neuroscience, 16, 775796 (2022). DOI: 10.3389/fnbeh.2022.775796.
9. Gannouni, S., Al-Edaily, A., Belwafi, K., et al. "Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification", Scientific Reports, 11(1), 7071 (2021). DOI: 10.1038/s41598-021-86345-5.
10. Hattingh, C.J., Ipser, J., Tromp, S.A., et al. "Functional magnetic resonance imaging during emotion recognition in social anxiety disorder: an activation likelihood meta-analysis", Frontiers in Human Neuroscience, 6, 347 (2013). DOI: 10.3389/fnhum. 2012.00347.
11. Li, C.M., Wang, B., Zhang, S., et al. "Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism", Computers in Biology and Medicine, 143, 105303 (2022). DOI: 10.1016/j.compbiomed.2022.105303.
12. Li, C.M., Zhang, Z., Zhang, X., et al. "EEGbased emotion recognition via transformer neural architecture search", IEEE Transactions on Industrial Informatics, 19(4), pp. 6016-6025 (2022). DOI: 10.1109/TII.2022.3170422.
13. Malmivuo, J. "Comparison of the properties of EEG and MEG in detecting the electric activity of the brain", Brain Topography, 25(1), pp. 1-19 (2012). DOI: 10.1007/s10548-011-0202-1.
14. Van den Broek, E.L. "Ubiquitous emotion-aware computing", Pers. Ubiquitous Comput., 17(1), pp. 53-67 (2013). DOI: 10.1007/s00779-011-0479-9.
15. Mehrabian, A. "Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament", Curr. Psychol., 14(4), pp. 261-292 (1996). DOI: 10.1007/BF02686918.
16. Khosrowabadi, R., Heijnen, M., Wahab, A., et al. "The dynamic emotion recognition system based on functional connectivity of brain regions", 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, pp. 377-381 (2010). DOI: 10.1109/IVS.2010.5548102.
17. Chi, Y.M., Wang, Y.-T., Wang, Y., et al. "Dry and noncontact EEG sensors for mobile braincomputer interfaces", IEEE Trans. Neural Syst. Rehabil. Eng., 20(2), pp. 228-235 (2012). DOI: 10.1109/TNSRE.2011.2174652.
18. Wang, L.-F., Liu, J.-Q., Yang, B., et al. "PDMSbased low cost flexible dry electrode for long-term EEG measurement", IEEE Sens. J., 12(9), pp. 2898-2904 (2012). DOI: 10.1109/JSEN.2012.2204339.
19. Huang, Y.-J., Wu, C.-Y., Wong, A.M.-K., et al. "Novel active comb-shaped dry electrode for EEG measurement in hairy site", IEEE Trans. Biomed. Eng., 62(1), pp. 256-263 (2015). DOI: 10.1109/TBME.2014.2347318.
20. https://bcmi.sjtu.edu.cn/home/seed/ 21. Stam, C.J., Nolte, G., and Daffertshofer, A. "Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources", Hum. Brain Mapp., 28(11), pp. 1178-1193 (2007). DOI: 10.1002/hbm.20346.
22. Li, P., Liu, H., Si, Y., et al. "EEG based emotion recognition by combining functional connectivity network and local activations", IEEE Trans. Biomed. Eng., 66(10), pp. 2869-2881 (2019). DOI: 10.1109/TBME.2019.2897651.
23. Thammasan, N., Moriyama, K., Fukui, K.-I., et al. "Familiarity effects in EEG-based emotion recognition", Brain Inform., 4(1), pp. 39-50 (2017). DOI: 10.1007/s40708-016-0051-5.
24. Zheng, W.-L., Zhu, J.-Y., and Lu, B.-L. "Identifying stable patterns over time for emotion recognition from EEG", IEEE Trans. Affect. Comput., 10(3), pp. 417- 429 (2019). DOI: 10.1109/TAFFC.2017.2712143.
25. Koelstra, S., Muehl, C., Soleymani, M., et al. "DEAP: A dataset for emotion analysis using physiological and audiovisual signals", IEEE Transactions on Affective Computing, 3(1), pp. 18-31 (2012).
26. Katsigiannis, S., and Ramzan, N. "DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-theshelf devices", IEEE Journal of Biomedical and Health Informatics, 22(1), pp. 98-107 (2018). DOI: 10.1109/JBHI.2017.2688239.
27. Eysenck, S.B.G., Eysenck, H.J., and Barrett, P. "A revised version of the psychoticism scale", Personality and Individual Differences, 6(1), pp. 21-29 (1985). DOI: 10.1016/0191-8869(85)90026-1.
28. Singh, B., and Wagatsuma, H. "A removal of eye movement and blink artifacts from EEG data using Morphological Component Analysis", Comput. Math. Methods Med., 2017, 1861645 (2017). DOI: 10.1155/2017/1861645.
29. Bastos, A.M. and Schoffelen, J.-M. "A tutorial review of functional connectivity analysis methods and their interpretational pitfalls", Front. Syst. Neurosci., 9, p. 175 (2015). DOI: 10.3389/fnsys.2015.00175.
30. Lachaux, J.P., Rodriguez, E., Martinerie, J., et al. "Measuring phase synchrony in brain signals", Hum. Brain Mapp., 8(4), pp. 194-208 (1999). DOI: 10.1002/(SICI)1097-0193(1999)8:4 194::AIDHBM4? 3.0.CO;2-C.
31. Chen, Y.-W. and Lin, C.-J. "Combining SVMs with various feature selection strategies", Feature Extraction, Berlin, Heidelberg: Springer Berlin Heidelberg, 207, pp. 315-324 (2008). DOI: 10.1007/978-3-540- 35488-8 13.
32. Lipton, Z.C., Berkowitz, J., and Elkan, C. "A critical review of recurrent neural networks for sequence learning", arXiv [cs.LG] (2015).
33. Jain, L.C. and Medsker, L.R., Recurrent Neural Networks: Design and Applications, 1st Ed., Boca Raton, FL: CRC Press (1999).
34. Liu, Z., Yang, M., Wang, X., et al. "Entity recognition from clinical texts via recurrent neural network", BMC Med. Inform. Decis. Mak., 17(S2), pp. 53-61 (2017). DOI: 10.1186/s12911-017-0468-7.
35. Wu, Y.-C., Yin, F., Chen, Z., et al. "Handwritten Chinese text recognition using separable multidimensional recurrent neural network", 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, Japan, pp. 79-84 (2017). DOI: 10.1109/ICDAR.2017.22.
36. Sutskever, I., Martens, J., and Hinton, G.E. "Generating text with recurrent neural network", In Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML'11), Madison, WI, USA, pp. 1017-1024 (2011). DOI: 10.5555/3104482.3104610.
37. Yang, Z.-L., Guo, X.-Q., Chen, Z.-M., et al. "RNNstega: Linguistic steganography based on recurrent neural networks", IEEE Trans. Inf. Forensics Secur., 14(5), pp. 1280-1295 (2019). DOI: 10.1109/TIFS.2018.2871746.
38. Lu, L., Zhang, X., and Renais, S. "On training the recurrent neural network encoder-decoder for large vocabulary end-to-end speech recognition", In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, pp. 5060-5064 (2016). DOI: 10.1109/ICASSP.2016.7472641.
39. Guo, T., Xu, Z., Yao, X., et al. "Robust online time series prediction with recurrent neural networks", In 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, pp. 816-825 (2016). DOI: 10.1109/DSAA.2016.92.
40. Vidyaratne, L., Glandon, A., Alam, M., et al. "Deep recurrent neural network for seizure detection", In 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, pp. 1202- 1207 (2016). DOI: 10.1109/IJCNN.2016.7727334.
41. Dey, R. and Salem, F.M. "Gate-variants of Gated Recurrent Unit (GRU) neural networks", 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, pp. 1597- 1600 (2017). DOI: 10.1109/MWSCAS.2017.8053243.
42. Gruber, N. and Jockisch, A. "Are GRU cells more specific and LSTM cells more sensitive in motive classification of text", Front Artif Intell, 3, p. 40 (2020). DOI: 10.3389/frai.2020.00040.
43. Nguyen, M.V., Lai, V.D., Veyseh, A.P.B., et al. "Trankit: A light-weight transformer-based toolkit for multilingual natural language processing", arXiv Preprint arXiv:2101.03289 (2021).
44. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. "An image is worth 1616 words: Transformers for image recognition at scale", arXiv preprint arXiv:2010.11929 (2020).
45. Kostas, D., Aroca-Ouellette, S., and Rudzicz, F. "BENDR: Using transformers and a contrastive selfsupervised learning task to learn from massive amounts of EEG data", Frontiers in Human Neuroscience, 15, 653659 (2021). DOI: 10.3389/fnhum.2021.653659.
46. Li, X., Song, D., Zhang, P., et al. "Exploring EEG features in cross-subject emotion recognition", Front. Neurosci., 12, p. 162 (2018). DOI: 10.3389/fnins.2018.00162.
47. He, K., Zhang, X., Ren, S., et al. "Deep residual learning for image recognition", 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770-778 (2016).
48. Wu, X., Zheng, W.-L., and Lu, B.-L. "Identifying functional brain connectivity patterns for EEG-based emotion recognition", 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, pp. 235-238 (2019). DOI: 10.1109/NER.2019.8717035.