Biosynthesis of silver nanoparticles using histiopteris incisa leaf extract and their characterization and thermophysical study

Document Type : Research Article

Authors

1 V.S.B. Engineering College, Karur, Tamil Nadu, India – 639111

2 Paavai Engineering College, Namakkal, Tamil Nadu, India – 637018

3 PSG College of Technology, Coimbatore, Tamil Nadu, India – 641004

Abstract

Nanofluids are nanoparticle suspensions in base fluids such as water, oil. Nanoparticles can alter the thermophysical, mechanical, and other characteristics of base fluids. These nanofluids exhibit significantly greater thermal properties than conventional working fluids, such as increased thermal conductivity by increasing the temperature and percentage volume in the base fluid. The significance of silver nanoparticles in enhancing coolant characteristics in heat transfer applications has been established. One of the synthesis technique is the biosynthesis technique, which is environmentally friendly, energy-efficient, large-scale, and low-cost. The biosynthesis of silver nanoparticles (AgNPs) utilising Histiopteris incisa (water fern) leaf extract was the focus of this study. The silver nanoparticles were prepared at room temperature at different concentrations, such as 1 mM, 3 mM, and 5 mM, using a stirrer for 1 h. Plant extract was combined with different concentrations of silver nitrate solutions and analysed for nanoparticles using UV-Vis spectroscopy. High-resolution transmission electron microscopy (HRTEM), X-ray Powder Diffraction (XRD), Dynamic light scattering (DLS), Zeta potential, and Fourier Transform Infrared Spectroscopy (FT-IR) were employed to analyse the silver nanoparticles. The AgNPs synthesised were spherical, having particle sizes ranging from 98 nm to 69 nm. Thermal conductivity increased with increasing temperature and volume concentration.

Keywords

Main Subjects


References:
1.Perry, R.H., Green, D.W., & Maloney, J.O., Perry'sChemical Engineers' Handbook, Seventh, InternationalEdition (1997).
2.Wessel, D., ASHRAE Fundamentals Handbook;American Society of Heating, Refrigerating, and Air-Conditioning Engineers: Atlanta, GA, USA (2001).
3.Hwang, Y.J., Lee, J.K., Lee, C.H., et al. “Stability andthermal conductivity characteristics of nanofluids”.Thermochimica Acta, 455(1-2), pp. 70-74 (2007). https://doi.org/10.1016/j.tca.2006.11.036.
4.Shackelford, J.F. & Alexander, W. “CRC materialsscience and engineering handbook”, CRC Press (2000).
5.Slack, G.A. “Thermal conductivity of MgO, Al2O3,MgAl2O4, and Fe3O4 crystals from 3° to 300° K”.Physical Review, 126(2), p. 427 (1962).https://doi.org/10.1103/PhysRev.126.427.
6.Kim, S.H., Choi, S.R., & Kim, D. “Thermalconductivity of metal-oxide nanofluids: Particle sizedependence and effect of laser irradiation”, J. HeatTransf. Trans., ASME, 129, pp. 298–307 (2007). https://doi.org/10.1115/1.2427071.
7.Eastman, J.A., Choi, S.U.S., Li, S., et al. “Anomalouslyincreased effective thermal conductivities of ethyleneglycol-based nanofluids containing coppernanoparticles” Applied Physics Letters, 78(6), pp. 718-720 (2001). https://doi.org/10.1063/1.1341218.
8.Choi, S.U.S. “Enhancing thermal conductivity of fluidswith nanoparticles”, In Developments and Applicationsof NonNewtonian Flows, Siginer, D.A. and Wang, H.P.,ASME, New York, pp. 99-105 (1995).
9.Shet, V.B., Kumar, P.S., Vinayagam, R., et al. “Cocoapod shell mediated silver nanoparticles synthesis,characterization, and their application as nanocatalystand antifungal agent”, Applied Nanoscience, 13(6), pp.4235-4245 (2023). https://doi.org/10.1007/s13204-023-02873-8.
10.Kakaç, S. & Pramuanjaroenkij, A. “Single-phase andtwo-phase treatments of convective heat transferenhancement with nanofluids–A state-of-the-artreview”, International Journal of Thermal Sciences,100, pp. 75-97 (2016).https://doi.org/10.1016/j.ijthermalsci.2015.09.021.
11.Simpson, S., Schelfhout, A., Golden, C., et al.“Nanofluid thermal conductivity and effectiveparameters”, Applied Sciences, 9(1), p. 87 (2018). https://doi.org/10.3390/app9010087.
12.Feroze, N., Arshad, B., Younas, M., et al. “Fungalmediated synthesis of silver nanoparticles andevaluation of antibacterial activity”, MicroscopyResearch and Technique, 83(1), pp. 72-80 (2020). https://doi.org/10.1002/jemt.23390.
13.Azizian-Shermeh, O., Valizadeh, M., Taherizadeh, M.,et al. “Phytochemical investigation and phytosynthesisof eco-friendly stable bioactive gold and silvernanoparticles using petal extract of saffron (Crocussativus L.) and study of their antimicrobial activities”,Applied Nanoscience, 10, pp. 2907-2920 (2020). https://doi.org/10.1007/s13204-019-01059-5.
14.Garg, D., Sarkar, A., Chand, P., et al. “Synthesis of silver nanoparticles utilizing various biological systems:mechanisms and applications—a review”, Progress inBiomaterials, 9, pp. 81-95 (2020). https://doi.org/10.1007/s40204-020-00135-2.
15.Kato, Y. & Suzuki, M. “Synthesis of metal nanoparticlesby microorganisms”, Crystals, 10(7), p. 589 (2020).https://doi.org/10.3390/cryst10070589.
16.Malik, M., Iqbal, M.A., Iqbal, Y., et al. “Biosynthesis ofsilver nanoparticles for biomedical applications: A minireview”, Inorganic Chemistry Communications, 109980(2022). https://doi.org/10.1016/j.inoche.2022.109980.
17.Qamer, S., Romli, M.H., Che-Hamzah, F., et al.“Systematic review on biosynthesis of silvernanoparticles and antibacterial activities: Applicationand theoretical perspectives”, Molecules, 26(16), p.5057 (2021). https://doi.org/10.3390/molecules26165057.
18.Yassin, M.A., Elgorban, A.M., El-Samawaty, A.M.A., etal. “Biosynthesis of silver nanoparticles usingPenicillium verrucosum and analysis of their antifungalactivity”, Saudi Journal of Biological Sciences, 28(4),pp. 2123-2127 (2021). https://doi.org/10.1016/j.sjbs.2021.01.063.
19.Chamsa-ard, W., Brundavanam, S., Fung, C., et al.“Nanofluid types, their synthesis, properties, andincorporation indirect solar thermal collectors: Areview”, Nanomaterials, 7(6), p. 131 (2017). https://doi.org/10.3390/nano7060131.
20.Vinayagam, R., Hebbar, A., Kumar, P.S., et al. “Greensynthesized cobalt oxide nanoparticles withphotocatalytic activity towards dye removal”,Environmental Research, 216, p. 114766 (2023). https://doi.org/10.1016/j.envres.2022.114766.
21.Vinayagam, R., Pai, S., Murugesan, G., et al. “Synthesisof photocatalytic zinc oxide nanoflowers usingPeltophorum pterocarpum pod extract and theircharacterization”, Applied Nanoscience, 13(1), pp. 847-857 (2023). https://doi.org/10.1007/s13204-021-01919-z.
22.Ahmed, S., Ahmad, M., Swami, B.L., et al. “A reviewon plants extract mediated synthesis of silvernanoparticles for antimicrobial applications: a greenexpertise”, Journal of Advanced Research, 7(1), pp. 17-28 (2016). https://doi.org/10.1016/j.jare.2015.02.007.
23.Kumar, M., Dandapat, S., Ranjan, R., et al. “Plantmediated synthesis of silver nanoparticles usingPunicagranatum aqueous leaf extract”, J. Microbiol.Exp., 6(4), pp. 175–178 (2018).https://doi.org/ 10.15406/jmen.2018.06.00211.
24.Valsalam, S., Agastian, P., Arasu, M.V., et al. “Rapidbiosynthesis and characterization of silver nanoparticlesfrom the leaf extract of Tropaeolummajus L. and itsenhanced in-vitro antibacterial, antifungal, antioxidantand anticancer properties”, J. Photochem. Photobiol., B191, pp. 65–74 (2019).https://doi.org/10.1016/j.jphotobiol.2018.12.010.
25.Alharbi, F.A. & Alarfaj, A.A. “Green synthesis of silvernanoparticles from Neuradaprocumbens and itsantibacterial activity against multi-drug resistantmicrobial pathogens”, J. King Saud Univ. – Sci., 32(2),pp. 1346–1352 (2020). https://doi.org/10.1016/j.jksus.2019.11.026.
26.Renuka, R., Devi, K.R., Sivakami, M., et al.“Biosynthesis of silver nanoparticles using Phyllanthusemblica fruit extract for antimicrobial application”,Biocatalysis and Agricultural Biotechnology, 24,101567 (2020). https://doi.org/10.1016/j.bcab.2020.101567.
27.Aisida, S.O., Ugwu, K., Nwanya, A.C., et al.“Biosynthesis of silver oxide nanoparticles using leaveextract of Telfairia Occidentalis and its antibacterialactivity”, Materials Today: Proceedings, 36, pp. 208-213 (2021). https://doi.org/10.1016/j.matpr.2020.03.005.
28.Manik, U.P., Nande, A., Raut, S., et al. “Green synthesisof silver nanoparticles using plant leaf extraction ofArtocarpus heterophylus and Azadirachta indica”,Results in Materials, 6, 100086 (2020). https://doi.org/10.1016/j.rinma.2020.100086.
29.Jebril, S., Jenana, R.K.B., and Dridi, C. “Green synthesis ofsilver nanoparticles using Melia azedarach leaf extract andtheir antifungal activities: In vitro and in vivo”, MaterialsChemistry and Physics, 248, 122898 (2020). https://doi.org/10.1016/j.matchemphys.2020.122898.
30.Al-Otibi, F., Perveen, K., Al-Saif, N.A., et al.“Biosynthesis of silver nanoparticles using Malvaparviflora and their antifungal activity”, Saudi Journalof Biological Sciences, 28(4), pp. 2229-2235 (2021). https://doi.org/10.1016/j.sjbs.2021.01.012.
31.Akwu, N.A., Naidoo, Y., Singh, M., et al. “Twotemperatures biogenic synthesis of silver nanoparticlesfrom Grewia lasiocarpa E. Mey. ex Harv. leaf and stembark extracts: characterization and applications”,BioNanoScience, 11, pp. 142-158 (2021). https://doi.org/10.1007/s12668-020-00812-3.
32.Talabani, R.F., Hamad, S.M., Barzinjy, A.A., et al.“Biosynthesis of silver nanoparticles and theirapplications in harvesting sunlight for solar thermalgeneration”, Nanomaterials, 11(9), 2421 (2021). https://doi.org/10.3390/nano11092421.
33.Kulkarni, H.R., Dhanasekaran, C., Rathnakumar, P., etal. “Experimental study on thermal analysis of helicalcoil heat exchanger using Green synthesis silvernanofluid”, Materials Today: Proceedings, 42, pp.1037-1042 (2021). https://doi.org/10.1016/j.matpr.2020.12.087.
34.Hashemi Karouei, S.H., Mousavi Ajarostaghi, S.S.,Gorji-Bandpy, M., et al. “Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helicaldouble-pipe heat exchanger equipped with an innovative curved conical turbulator”, Journal of Thermal Analysisand Calorimetry, 143, pp. 1455-1466 (2021). https://doi.org/10.1007/s10973-020-09425-0.
Volume 32, Issue 3
Transactions on Nanotechnology
January and February 2025 Article ID:7280
  • Receive Date: 08 November 2022
  • Revise Date: 08 January 2024
  • Accept Date: 07 February 2024