References:
1.Zhou, C., Jin, Y., Chen, Y., et al. “Histopathologyclassification and localization of colorectal cancer usingglobal labels by weakly supervised deep learning”,Comput. Med. Imaging Graph., 88, 101861 (2021).https://doi.org/10.1016/j.compmedimag.2021.101861.
2.Tripathy, A., Dash, J., Kancharla, S., et al. “Probiotics:a promising candidate for management of colorectalcancer”, Cancers, 13(13), p. 3178 (2021). https://doi.org/10.1016/j.compmedimag.2021.101861.
3.van den Berg, I., Coebergh van den Braak, R.R., vanVugt, J.L., et al. “Actual survival after resection ofprimary colorectal cancer: Results from a prospectivemulticenter study”, World J. Surg. Oncol., 19(1), pp.1-10 (2021). https://doi.org/10.1186/s12957-021-02207-4.
4.Ottaiano, A., Santorsola, M., Circelli, L., et al.“Hypertension, type 2 diabetes, obesity, and p53 mutations negatively correlate with metastatic colorectal cancerpatients’ survival”, Front. Med., 10, 1091634 (2023).https://doi.org/10.3389/fmed.2023.1091634.
5.Jelski, W. and Mroczko, B. “Biochemical markers ofcolorectal cancer-present and future”, Cancer Manag.Res., 22, pp. 4789-97 (2020). https://doi.org/10.3389/fmed.2023.1091634.
6.Metze, K., Adam, R., and Florindo, J.B. “The fractaldimension of chromatin-a potential molecular markerfor carcinogenesis, tumor progression and prognosis”,Expert Rev. Mol. Diagn., 19(4), pp. 299-312 (2019). https://doi.org/10.1080/14737159.2019.1597707.
7.Sirinukunwattana, K., Raza, S.E., Tsang, Y.W., et al.“Locality sensitive deep learning for detection andclassification of nuclei in routine colon cancerhistology images”, IEEE Transactions on MedicalImaging, 35(5), pp.1196-1206 (2016). https://doi.org/10.1109/tmi.2016.2525803.
8.Jia, Z., Huang, X., Eric, I., et al. “Constrained deepweak supervision for histopathology imagesegmentation”, IEEE Transactions on MedicalImaging, 36(11), pp. 2376-2388 (2017). https://doi.org/10.1109/TMI.2017.2724070.
9.Sung, H., Ferlay, J., Siegel, R. L., et al. “Global cancerstatistics 2020: GLOBOCAN estimates of incidenceand mortality worldwide for 36 cancers in 185countries”, CA: A Cancer Journal for Clinicians,71(3), pp. 209-249 (2021). https://doi.org/10.3322/caac.21660.
10.Gadermayr, M., Dombrowski, A.K., Klinkhammer, B.M.,et al. “CNN cascades for segmenting sparse objects ingigapixel whole slide images”, Computerized MedicalImaging and Graphics, 71, pp. 40-48 (2019). https://doi.org/10.1016/j.compmedimag.2018.11.002.
11.Hatipoglu, N. and Bilgin, G. “Cell segmentation inhistopathological images with deep learningand Biological Engineering and Computing, 55(10), pp. 1829-1848 (2017). https://doi.org/10.1007/s11517-017-1630-1.
12.Kaushal, C., Bhat, S., Koundal, D., et al. “Recenttrends in computer assisted diagnosis (CAD) systemfor breast cancer diagnosis using histopathologicalimages”, Irbm, 40(4), pp. 211-227 (2019). https://doi.org/10.1016/j.irbm.2019.06.001.
13.Talo, M. “Automated classification of histopathologyimages using transfer learning”, Artificial Intelligencein Medicine, 101, 101743 (2019). https://doi.org/10.1016/j.artmed.2019.101743.
14.Mazo, C., Bernal, J., Trujillo, M., et al. “Transferlearning for classification of cardiovascular tissues inhistological images”, Computer Methods andPrograms in Biomedicine, 165, pp. 69-76 (2018). https://doi.org/10.1016/j.cmpb.2018.08.006.
15.George, K., Faziludeen, S., and Sankaran, P. “Breastcancer detection from biopsy images using nucleusguided transfer learning and belief based fusion”,Computers in Biology and Medicine, 124, 103954(2020). https://doi.org/10.1016/j.compbiomed.2020.103954.
16.Celik, Y., Talo, M., Yildirim, O., et al. “Automatedinvasive ductal carcinoma detection based using deeptransfer learning with whole-slide images”, PatternRecognition Letters, 133, pp. 232-239 (2020).https://doi.org/10.1016/j.patrec.2020.03.011.
17.Rezaee, K., Badiei, A., and Meshgini, S. “A hybrid deeptransfer learning-based approach for COVID-19classification in chest X-ray images”, In 2020 27thNational and 5th International Iranian Conference onBiomedical Engineering (ICBME), pp. 234-241 (2020).https://doi.org/10.1109/ICBME51989.2020.9319426.
18.Kleczek, P., Jaworek-Korjakowska, J., and Gorgon,M. “A novel method for tissue segmentation in high-resolution H&E-stained histopathological whole-slideimages”, Computerized Medical Imaging andGraphics, 79, 101686 (2020). https://doi.org/10.1016/j.compmedimag.2019.101686.
19.Amores, J. “Multiple instance classification: Review,taxonomy and comparative study”, ArtificialIntelligence, 201, pp. 81-105 (2013). https://doi.org/10.1016/j.artint.2013.06.003.
20.Haj-Hassan, H., Chaddad, A., Harkouss, et al.“Classifications of multispectral colorectal cancertissues using convolution neural network”, Journal ofPathology Informatics, 8, pp. 1-7 (2017). https://doi.org/10.4103/jpi.jpi_47_16.
21.Iizuka, O., Kanavati, F., Kato, K., et al. “Deep learning models for histopathological classification of gastricand colonic epithelial tumours”, Scientific Reports,10(1), pp. 1-11 (2020). https://doi.org/10.1038/s41598-020-58467-9.
22.Kwak, M.S., Lee, H.H., Yang, J.M., et al. “Deepconvolutional neural network-based lymph nodemetastasis prediction for colon cancer usinghistopathological images”, Frontiers in Oncology, 10,p.3053 (2020). https://doi.org/10.3389/fonc.2020.619803.
23.Korbar, B., Olofson, A.M., Miraflor, A.P., et al. “Deeplearning for classification of colorectal polyps onwhole-slide images”, Journal of PathologyInformatics, 8, pp. 1-30 (2017). https://doi.org/10.4103/jpi.jpi_34_17.
24.Manivannan, S., Li, W., Zhang, J., et al. “Structureprediction for gland segmentation with hand-craftedand deep convolutional features”, IEEE Transactionson Medical Imaging, 37(1), pp. 210-221 (2017). https://doi.org/10.1109/TMI.2017.2750210.
25.Ho, C., Zhao, Z., Chen, X.F, et al. “A promising deeplearning-assistive algorithm for histopathologicalscreening of colorectal cancer”, Scientific Reports,12(1), pp. 1-9 (2022). https://doi.org/10.1038/s41598-022-06264-x.
26.Chen, H., Li, C., Li, X, et al. “IL-MCAM: Aninteractive learning and multi-channel attentionmechanism-based weakly supervised colorectalhistopathology image classification approach”,Computers in Biology and Medicine, 143, 105265(2022). https://doi.org/10.1016/j.compbiomed.2022.105265.
27.Wang, K.S., Yu, G., Xu, C., et al. “Accurate diagnosisof colorectal cancer based on histopathology imagesusing artificial intelligence”, BMC Medicine, 19(1),pp. 1-12 (2021). https://doi.org/10.1186/s12916-021-01942-5.
28.Riasatian, A., Babaie, M., Maleki, D., et al. “Fine-tuning and training of densenet for histopathologyimage representation using tcga diagnostic slides”,Medical Image Analysis, 70, p. 102032 (2021). https://doi.org/10.1016/j.media.2021.102032.
29.Kassani, S.H., Kassani, P.H., Wesolowski, M.J, et al.“Deep transfer learning based model for colorectalcancer histopathology segmentation: A comparativestudy of deep pre-trained models”, Int. J. Med.Inform., 159, 104669 (2022). https://doi.org/10.1016/j.ijmedinf.2021.104669.
30.Raju, M.S. and Rao, B.S. “Colorectal multi-classimage classification using deep learning models”,Bull. Electr. Eng. Inform., 11(1), pp. 195-200 (2022). https://doi.org/10.11591/eei.v11i1.3299.
31.Bokhorst, J.M., Nagtegaal, I.D., Fraggetta, F., et al.“Deep learning for multi-class semantic segmentationenables colorectal cancer detection and classificationin digital pathology images”, Sci. Rep.,13(1), p. 8398(2023). https://doi.org/10.1038/s41598-023-35491-z.
32.Khazaee Fadafen, M. and Rezaee, K. “Ensemble-basedmulti-tissue classification approach of colorectal cancerhistology images using a novel hybrid deep learningframework”, Sci. Rep., 13(1), p. 8823 (2023). https://doi.org/10.1038/s41598-023-35431-x.
33.Ha, I., Kim, H., Park, S., et al. “Image retrieval usingBIM and features from pretrained VGG network forindoor localization”, Building and Environment, 140,pp. 23-31 (2018). https://doi.org/10.1016/j.buildenv.2018.05.026.
34.Li, Z., Liu, F., Yang, W., et al. “A survey ofconvolutional neural networks: Analysis applicationsand prospects”, CoRR, vol. abs/2004.02806 (2020). https://doi.org/10.1109/TNNLS.2021.3084827.
35.Zagoruyko, S. and Komodakis, N. “Wide residualnetworks”, arXiv preprint arXiv:1605, 07146 (2015). https://doi.org/10.48550/arXiv.1605.07146.
36.Kather, J.N., Weis, C.A., Bianconi, F., et al. “Multi-class texture analysis in colorectal cancer histology”,Scientific Reports, 6(1), pp. 1-11 (2016). https://doi.org/10.1038/srep27988.
37.Dhal, K.G., Ray, S., Das, S., et al. “Hue-preservingand gamut problem-free histopathology imageenhancement”, Iranian Journal of Science andTechnology, Transactions of Electrical Engineering,43(3), pp. 645-672 (2019). https://doi.org/10.1007/s40998-019-00175-w.
38.Ghosh, S., Bandyopadhyay, A., Sahay, S., et al.“Colorectal histology tumor detection using ensembledeep neural network”, Engineering Applications ofArtificial Intelligence, 100, 104202 (2021). https://doi.org/10.1016/j.engappai.2021.104202.
39.Hamida, A.B., Devanne, M., Weber, J., et al. “Deeplearning for colon cancer histopathological images analysis”, Computers in Biology and Medicine, 136, 104730 (2021). https://doi.org/10.1016/j.compbiomed.2021.104730.
40.Kather, J.N., Krisam, J., Charoentong, P., et al.“Predicting survival from colorectal cancer histologyslides using deep learning: A retrospective multicenterstudy”, PLoS Medicine, 16(1), e1002730 (2021). https://doi.org/10.1371/journal.pmed.1002730.