Cooling performance of turning M2 steel by using copper nano fluids

Document Type : Article

Authors

1 Department of Mechanical Engineering, Jaya Engineering College, Chennai 602024, India

2 Department of Mechanical Engineering, Easwari Engineering College, Ramapuram, Chennai 600089, India

3 Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai 600069, India

4 Department of Mechanical Engineering, GRT Institute of Engineering and Technology, Tiruttani 631209, India

Abstract

Minimum quantity Lubrication (MQL) is a technique used to reduce the utilization of cutting liquids in accomplishing a perfect and well-disposed condition. In this examination, the machinability of M2 steel which is hard-to-machine material utilized in key applications was researched under three separate cutting strategies such as dry environment, oil environment, and copper nanofluids with minimum quantity lubrication as environment. The turning tests were conducted utilizing carbide inserts on five separate cutting speed with constant feed and depth of cut. The maximum roughness value obtained with dry condition is 3.75 µm, for oil is 1.7 µm and nanofluid is 0.81 µm. The extreme flank wear values attained is 0.16 mm, 0.055 mm and 0.04 mm for dry, oil and nanofluid conditions. The reduced value of surface roughness (0.45 µm) and flank wear (0.04 mm) were obtained when the machining was performed under copper nanofluid as a coolant.

Keywords

Main Subjects


References:
1. Naresh Babu, M., Anandan, V., Parthasarathi, N.L., et al. "Performance analysis in turning of D3 tool steel using silver nanoplatelets as additives under MQL", J Braz. Soc. Mech. Sci. Eng., 44, p. 591 (2022). DOI: org/10.1007/s40430-022-03909-w.
2. Wang, X., Li, C., Zhang, Y., et al. "Influence of texture shape and arrangement on nano fluid minimum quantity lubrication turning", Int. J. Adv. Manuf. Technol., 119, pp. 631-646 (2022). DOI: org/10.1007/s00170-021-08235-4.
3. Chen, M., Peng, R., Zhao, L., et al. "Effects of minimum quantity lubrication strategy with internal cooling tool on machining performance in turning of nickel-based superalloy GH4169", Int. J. Adv. Manuf. Technol., 118, pp. 3673-3689 (2022). DOI: org/10.1007/s00170-021-08194-w.
4. Zhang, G., Chen, B., Wu, G., et al. "Experimental assessment of textured tools with nano-lubricants in orthogonal cutting of titanium alloy", J. Mech. Sci. Technol., 36(5), pp. 2489-2497 (2022). DOI: org/10.1007/s12206-022-0431-0.
5. Makhesana, M.A., Patel, K.M., Krolczyk, G.M., et al. "Influence of MoS2 and graphite-reinforced nano fluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625", CIRP. J. Manuf. Sci. Technol., 41, pp. 225-238 (2023).DOI: org/10.1016/j.cirpj.2022.12.015.
6. Ibrahim, A.M.M., Omer, M.A.E., Das, S.R., et al. "Evaluating the effect of minimum quantity lubrication during hard turning of AISI D3 steel using vegetable oil enriched with nano-additives", Alexandria. Eng. J., 61(12), pp. 10925-10938 (2022). DOI: org/10.1016/j.aej.2022.04.029.
7. Pal, A., Chatha, S.S., and Sidhu, H.S. "Assessing the lubrication performance of various vegetable oil-based nano-cutting  fluids via eco-friendly MQL technique in drilling of AISI 321 stainless steel", J. Braz. Soc. Mech. Sci. Eng., 44, p. 148 (2022). DOI: org/10.1007/s40430-022-03442-w.
8. Wang, R., Wang, X., Yan, P., et al. "The effects of cryogenic cooling on tool wear and chip morphology in turning of tantalum-tungsten alloys Ta-2.5W", J. Manuf. Process., 86, pp. 152-162 (2023). DOI: org/10.1016/j.jmapro.2022.12.063.
9. Liu, F., Wu, X., Xia, Y., et al. "A novel cold air electrostatic minimum quantity lubrication (CAEMQL) technique for the machining of titanium alloys Ti-6Al- 4 V", Int. J. Adv. Manuf. Technol., 126(7-8), pp. 1-16 (2023). DOI: org/10.1007/s00170-023-11222-6.
10. Dash, L., Padhan, S., Das, A., et al. "Machinability investigation and sustainability assessment in hard turning of AISI D3 steel with coated carbide tool under nano fluid minimum quantity lubrication-cooling condition", Proc I Mech E Part C: J Mechanical Engineering Science., 235(22), pp. 6496-6528 (2021). DOI: org/10.1177/0954406221993844.
11. Subbiah, N.S., Nookaraju, R., Lakshmi, Bc., et al. "Analysis on effect of nano fluid on process parameters in machining of EN19 steel", Advances in Materials and Processing Technologies., 8, pp. 1757-1767 (2022). DOI: org/10.1080/2374068X.2021.1953918.
12. Gupta, M.K., Boy, M., Korkmaz, M.E., et al. "Measurement and analysis of machining induced tribological characteristics in dual jet minimum quantity lubrication assisted turning of duplex stainless steel", Measurement., 187, 110353 (2022). DOI: org/10.1016/j.measurement.2021.110353.
13. Maruda, R.W., Wojciechowski, S., Szczotkarz, N., et al. "Metrological analysis of surface quality aspects in minimum quantity cooling lubrication", Measurement., 171, 108847 (2021). DOI: org/10.1016/j.measurement.2020.108847.
14. Emami, M. and Karimipour, A. "Theoretical and experimental study of the chatter vibration in wet and MQL machining conditions in turning process", Prec. Eng., 72, pp. 41-58 (2021). DOI: org/10.1016/j.precisioneng.2021.04.006.
15. Sarikaya, M., Sirin, S., Yildirim, C.V., et al. "Performance evaluation of whisker-reinforced ceramic tools under nano-sized solid lubricants assisted MQL turning of Co-based Haynes 25 superalloy", Cer. Int., 47, pp. 15542-15560 (2021). DOI: org/10.1016/j.ceramint.2021.02.122.
16. Garcia-Martinez, E., Miguel, V., Manjabacas, M.C., et al. "Low initial lubrication procedure in the machining of copper-nickel 70/30 ASTM B122 alloy", J. Manuf. Proc., 62, pp. 623-631 (2021). DOI: org/10.1016/j.jmapro.2021.01.002.
17. Hegab, H., Salem, A., Rahnamayan, S., et al. "Analysis, modeling, and multi-objective optimization of machining Inconel 718 with nano-additives based minimum quantity coolant", App. Soft. Comp. J., 108, 107416 (2021). DOI: org/10.1016/j.asoc.2021.107416.
18. Elsheikh, A.H., Elaziz, M.A., Das, S.R., et al. "A new optimized predictive model based on political optimizer for eco-friendly MQL-turning of AISI 4340 alloy with nano-lubricants", J. Manuf Proc., 67, pp. 562-578 (2021). DOI: org/10.1016/j.jmapro.2021.05.014.
19. Saleem, M.Q. and Mehmood, A. "Eco-friendly precision turning of superalloy Inconel 718 using MQL based vegetable oils: Tool wear and surface integrity evaluation", J. Manuf. Proc., 73, pp. 112-127 (2022). DOI: org/10.1016/j.jmapro.2021.10.059.
20. Ashok, B., Raj, R.T.K., Nanthagopal, K., et al. "Lemon peel oil-A novel renewable alternative energy source for diesel engine", Energy Conversion and Management., 139, pp. 110-121 (2017). DOI: org/10.1016/j.enconman.2017.02.049.
21. Khandekar, S., Ravi Sankar, M., Agnihotri, V., et al. "Nano-cutting  fluid for enhancement of metal cutting performance", Mat and Manuf Proc., 27, pp. 963-967 (2012). DOI: org/10.1080/10426914.2011.610078.
22. Ganesan, K., NareshBabu, M., Santhanakumar, M., et al. "Experimental investigation of copper nano fluid based minimum quantity lubrication in turning of H 11 steel", J Braz. Soc. Mech. Sci. Eng., 40, p. 160 (2018). DOI: org/10.1007/s40430-018-1093-9.
23. Naresh Babu, M. and Muthukrishnan, N. "Experimental analysis in drilling of AA 5052 using copper nanofluids under minimum quantity lubrication", Aust. J. Mech. Eng., 18(1), pp. 515-524 (2018). DOI: org/10.1080/14484846.2018.1455267.
24. Manimaran, R., Palaniradja, K., Alagumurthi, N., et al. "Preparation and characterization of copper oxide nano fluid for heat transfer applications", App Nanosci., 4, pp. 163-167 (2014). DOI: org/10.1007/s13204-012-0184-7.
25. Padmini, R., VamsiKrishna, P., and Krishna Mohana Rao, G. "Effectiveness of vegetable oil based nano fluids as potential cutting  fluids in turning AISI 1040 steel", Trib Int., 94, pp. 490-501 (2016). DOI: org/10.1016/j.triboint.2015.10.006.