Modeling and real-time cartesian impedance control of 3-DOF robotic arm in contact with the surface

Document Type : Review Article

Authors

Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey

Abstract

Robotic arms have become increasingly popular and widely used in various industrial applications. However, conventional control methods are not capable of adequately controlling a robotic arm in tasks that require contact with a surface. To address this issue, this study proposes a Cartesian impedance control method to control a 3-DOF robotic arm in real-time during contact with a surface. The proposed controller consists of two control loops: an inner loop and an outer loop. The inner loop utilizes a motion control method in the joint space, with the parameters of the controller being calculated through system identification. The outer loop implements Cartesian impedance control in the Cartesian space using a mass-spring-damper model. The coefficients of the Cartesian impedance control were determined based on the over-damped response with real-time applications. By selecting the inner loop in the joint space and the outer loop in the Cartesian space, the control of the robotic arm is guaranteed. The proposed method was tested in real-time, and its performance was compared with the PID with gravity compensation control in the Cartesian space. The results indicated that the proposed method was able to successfully follow reference trajectories and reduce the contact force.

Keywords

Main Subjects


References:
1. Zeng, G. and Hemami, A. "An overview of robot force control", Robotica, 15(5), pp. 473-482 (1997). DOI: 10.1017/S026357479700057X.
2. Hogan, N. "Impedance Control: an Approach To Manipulation", Proceedings of the American Control Conference, 1(March), pp. 304-313 (1984). DOI: 10.23919/ACC.1984.4788393.
3. Ba, K., Yu, B., Zhu, Q., et al. "The positionbased impedance control combined with complianceeliminated and feedforward compensation for HDU of legged robot", J Franklin Inst, 356(16), pp. 9232-9253 (2019). DOI: 10.1016/j.jfranklin.2019.08.014.
4. Nasir, K., Shauri, R.L.A., Salleh, N.M., et al. "Implementation of two-axis position-based impedance control with inverse kinematics solution for A 2-DOF robotic finger", International Journal of Engineering and Technology(UAE), 7(3), pp. 10-14 (2018). DOI: 10.14419/ijet.v7i3.11.15920.
5. Dai, P., Lu, W., Le, K., et al. "Sliding mode impedance control for contact intervention of an IAUV: Simulation and experimental validation", Ocean Engineering, 196(June 2019), pp. 1-11 (2020). DOI: 10.1016/j.oceaneng.2019.106855.
6. Fargas-Marques, A., Costa-Castello, R., and Basa~nez, L. "Spatial impedance control in coordinated manipulation", IFAC Proceedings Volumes, 33(27), pp. 231- 236 (2000). DOI: 10.1016/S1474-6670(17)37934-X.
7. Annamraju, S., Raj, S., Pediredla, V.K., et al. "Parameter determination technique for impedance control of interactive robots using transformation matrices", IFAC-PapersOnLine, 53(1), pp. 201-205 (2020). DOI: 10.1016/j.ifacol.2020.06.034.
8. Liang, L., Chen, Y., Liao, L., et al. "A novel impedance control method of rubber unstacking robot dealing with unpredictable and time-variable adhesion force", Robot Comput Integr Manuf, 67(August 2020), p. 102038 (2021). DOI: 10.1016/j.rcim.2020.102038.
9. Kang, S., Jin, M., and Chang, P.H. "A solution to the accuracy/robustness dilemma in impedance control", IEEE/ASME Transactions on Mechatronics, 14(3), pp. 282-294 (2009). DOI: 10.1109/TMECH.2008.2005524.
10. De Gea, J. and Kirchner, F. "Modelling and simulation of robot arm interaction forces using impedance control", IFAC Proceedings Volumes (IFAC-PapersOnline), 17, pp. 15589-15594 (1 PART 1) (2008). DOI: 10.3182/20080706-5-KR-1001.02636.
11. Hanafusa, T. and Hunang, Q. "Control of position, attitude, force and moment of 6-DOF manipulator by impedance control", 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, (1), pp. 274-279 (2018). DOI: 10.1109/ICARCV.2018.8581200.
12. Tourajizadeh, H., Boomeri, V., Afshari, S., et al. "Design, modeling, and impedance control of a new in-pipe inspection robot equipped by a manipulator", Scientia Iranica, 28(1), pp. 355-370 (2021). DOI: 10.24200/sci.2020.53117.3068.
13. Winiarski, T., Sikora, J., Seredynski, D., et al. "DAIMM Simulation Platform for Dual-Arm Impedance Controlled Mobile Manipulation", 2021 International Conference on Automation, Robotics and Applications, ICARA 2021, pp. 180-184 (2021). DOI: 10.1109/ICARA51699.2021.9376462.
14. Ding, Y. and Thomas, U. "Improving Safety and Accuracy of Impedance Controlled Robot Manipulators with Proximity Perception and Proactive Impact Reactions", Int Conf Robot Autom, ICRA 2021, pp. 3816- 3821 (2021). DOI: 10.1109/ICRA48506.2021.9561025.
15. Ramon, J.L., Pomares, J., and Felicetti, L. "Direct visual servoing and interaction control for a two-arms on-orbit servicing spacecraft", Acta Astronaut, 192(December 2021), pp. 368-378 (2022). DOI: 10.1016/j.actaastro.2021.12.045.
16. Palma, P., Seweryn, K., and Rybus, T. "Impedance control using selected compliant prismatic joint in a free- floating space manipulator", Aerospace, 9(8), pp. 1-17 (2022). DOI: 10.3390/aerospace9080406.
17. Wang, Y., Wu, H., and Mai, X. "An impedance-control based teleoperation system for live-line maintenance robot", J Phys Conf Ser, 2025(1), p. 012080 (2021). DOI: 10.1088/1742-6596/2025/1/012080.
18. Kana, S., Tee, K.P., and Campolo, D. "Humanrobot co-manipulation during surface tooling: A general framework based on impedance control, haptic rendering and discrete geometry", Robot Comput Integr Manuf, 67(July 2020), p. 102033 (2021). DOI: https://doi.org/10.1016/j.rcim.2020.102033.
19. Ochoa, H. and Cortesao, R. "Impedance control architecture for robotic-assisted mold polishing based on human demonstration", IEEE Transactions on Industrial Electronics, 0046(c), pp. 1-9 (2021). DOI: 10.1109/TIE.2021.3073310.
20. Ochoa, H. and Cortesao, R. "Impedance control architecture for robotic-assisted micro-drilling tasks", J Manuf Process, 67(April), pp. 356-363 (2021). DOI: 10.1016/j.jmapro.2021.04.066.
21. Wu, Y., Lamon, E., Zhao, F., et al. "Unified approach for hybrid motion control of MOCA based on weighted hole-body cartesian impedance formulation", IEEE Robot Autom Lett, 6(2), pp. 3505-3512 (2021). DOI: 10.1109/LRA.2021.3062316.
22. Garate, V.R., Gholami, S., and Ajoudani, A. "A scalable framework for multi-robot", IEEE Transactions on Robotics, 37(6), pp. 1-15 (2021). DOI: 10.1109/TRO.2021.3071530.
23. Zhang, H., Zhu, W., and Huang, Y. "A research on the control strategy of automatic charging robot for electric vehicles based on impedance control", J Phys Conf Ser, 2303(1), pp. 1-9 (2022). DOI: 10.1088/1742- 6596/2303/1/012085.
24. Llanos, C.H., Munoz, D., and Pertuz Mendez, S.A. "Simulation and implementation of impedance control in robotic hand", 24th ABCM International Congress of Mechanical Engineering, pp. 1-10 (2018). DOI: 10.26678/ABCM.COBEM2017.COB17-2327.
25. Cheng, L. and Tavakoli, M. "Ultrasound image guidance and robot impedance control for beating-heart surgery", Control Eng Pract, 81(August), pp. 9-17 (2018). DOI: 10.1016/j.conengprac.2018.08.017.
26. Sharifi, M., Salarieh, H., Behzadipour, S., et al. "Tele-echography of moving organs using an impedance-controlled telerobotic system", Mechatronics, 45, pp. 1339-1351 (2017). DOI: 10.1016/j.mechatronics.2017.05.006.
27. Sharifi, M., Salarieh, H., Behzadipour, S., et al. "Beating-heart robotic surgery using bilateral impedance control: Theory and experiments", Biomed Signal Process Control, 45, pp. 256-266 (2018). DOI: 10.1016/j.bspc.2018.05.015.
28. Akdogan, E., Aktan, M. E., Koru, A. T., et al. "Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: Performance analysis and clinical results", Mechatronics, 49(July 2017), pp. 77- 91 (2018). DOI: 10.1016/j.mechatronics.2017.12.001.
29. Dos Santos, W.M. and Siqueira, A.A.G. "Optimal impedance via model predictive control for robot-aided rehabilitation", Control Eng Pract, 93(September), p. 104177 (2019). DOI: 10.1016/j.conengprac.2019.104177.
30. Husmann, S., Kolkenbrock, M., Ketelhut, M., et al. "Fuzzy logic control of the support of a lightweight robot during rehabilitation", IFACPapersOnLine, 52(19), pp. 211-216 (2019). DOI: 10.1016/j.ifacol.2019.12.098.
31. Lau, J.Y., Liang, W., and Tan, K.K. "Enhanced robust impedance control of a constrained piezoelectric actuator-based surgical device", Sens Actuators A Phys, 290, pp. 97-106 (2019). DOI: 10.1016/j.sna.2019.02.015.
32. Denavit, J. and Hartenberg, R.S. "A kinematic notation for lower pair mechanisms based on matrices", J Appl Mech, 22, pp. 215-221 (1955). DOI: 10.1115/1.4011045.
33. Spong, M.W., Hutchinson, S., and Vidyasagar, M., Robot Modeling and Control, Wiley New York (2006). 
34. Tran, M.S., Le, N.B., Nguyen, V.T., et al. "Independent joint control system design method for robot motion reconstruction", Lecture Notes in Electrical Engineering, 465, pp. 627-638 (2018). DOI: 10.1007/978-3-319-69814-4 60.
Volume 31, Issue 16
Transactions on Mechanical Engineering (B)
September and October 2024
Pages 1420-1430
  • Receive Date: 02 November 2021
  • Revise Date: 16 February 2023
  • Accept Date: 24 November 2023