Effect of sudden pressure on spinal cord and break down (Dura mater, Arachnoid mater and Pia mater) an experimental analysis on threshold levels

Document Type : Research Article

Authors

School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Spinal cord is enveloped by three layers of meninges to protect the central nervous system from mechanical damage. Surgical operation and resection of tumors in the vicinity of spinal cord is complicated and risky because exposes it to probable irreversible damage. Nowadays, to reduce the risk of these operations, attempt is made to remove tumor using safer technique such as waterjet operation. In these methods interaction of waterjet and spinal cord is inevitable. To have safe interaction of operation, a standard development of waterjet criteria is necessary. In the present study a system of waterjet is designed for surgical operation in the vicinity of spinal cord along with limitations and thresholds. For this purpose, spinal cords of 2 years old sheep are considered. Results show that meninges layer is stiff enough to protect sheep spinal cord from rupture for pressures up to 8 bar. The role of different meninges layers to protect internal spinal cord soft tissue in interaction with waterjet is also studied. Effects of angle between nozzle and spinal cord axis, liquid density, nozzle diameter and waterjet velocity on internal soft tissue degradation as well as spread of inky waterjet beneath Arachnoid mater is also investigated in the absence of Dura mater.

Keywords

Main Subjects


References:
1.Maton, A., Jean, H., Charles, W.M., et al. “Humanbiology and health”, 1st. Ed., Englewood Cliffs, NewJersey, USA: Prentice Hall, ISBN 0-13-981176-1(1993).
2.Guertin, P.A. “Central pattern generator for locomotion:anatomical, physiological, and pathophysiologicalconsiderations”, Frontiers in Neurology, 3, p. 183 (2013). DOI: 10.3389/fneur.2012.00183.
3.Vasković, J. “Ventricles, meninges and blood vessels ofthe brain, Retrieved from KENHUB”, AccessedDecember 21 (2021). https://www.kenhub.com/en/library/anatomy/meninges-of-the-brain-and-spinal-cord.
4.Benowitz, L. and Yin, Y. “Optic Nerve Regeneration”,Arch Ophthalmol, 128(8), pp. 1059-1064 (2010). DOI: 10.1001/archophthalmol.2010.152.
5.Setzer, M., Murtagh, R.D., Murtagh, F.R., et al.“Diffusion tensor imaging tractography in patients withintramedullary tumors: comparison with intraoperative findings and value for prediction of tumor resectability”, J. Neurosurg Spine, 13(3), pp. 371-380 (2010). DOI: 10.3171/2010.3.SPINE09399.
6.Ogawa, Y., Nakagawa, A., Takayama, K., et al. “Pulsedlaser-induced liquid jet for skull base tumor removalwith vascular preservation through the transsphenoidalapproach: a clinical investigation”, Acta Neurochir,153(4), pp. 823–830 (2011). DOI: 10.1007/s00701-010-0925-x.
7.Nakagawa, A. “Pulsed laser-induced liquid jet systemfor treatment of sellar and parasellar tumors: Safetyevaluation”, J. Neurol Surg a Cent Eur Neurosurg,76(6), pp. 473-482 (2015). DOI: 10.1055/s-0034-1396436.
8.Endo, T., Takahashi, Y., Nakagawa, A., et al. “Use ofactuator-driven pulsed water jet in brain and spinalcord cavernous malformations resection”, OperativeNeurosurgery, 11(3), pp. 394-403 (2015). DOI: 10.1227/NEU.0000000000000867.
9.Derakhshan, R.M.T., Ahmadian, M.T., andFiroozbakhsh, K. “Pull-in criteria of a nonclassicalmicrobeam under electric field using homotopymethod’’, Scientia Iranica, 25(1), pp. 175-185 (2018). DOI: 10.24200/sci.2017.4315.
10.Alamoud, A.H., Baillot, E., Belabbas, C., et al. “Continuous and pulsed experiments with numerical simulation todissect pituitary gland tumour by using liquid jet”,Engineering Letters, 25(3), pp. 348-353 (2017).
11.Kok, A.C., den Dunnen, S., Lambers, K.T., et al.“Feasibility study to determine if microfracture surgery using water jet drilling is potentially safe for talarchondral defects in a caprine model”, Cartilage, 13(2),pp. 1627S-1636S (2019). DOI: 10.1177/1947603519880332.
12.Babaiasl, M., Boccelli, S., Chen, Y., et al. “Predictivemechanics-based model for depth of cut (DOC) ofwaterjet in soft tissue for waterjet-assisted medicalapplications”, Med Biol Eng Comput, 58, pp. 1845-1872 (2020). https://doi.org/10.1007/s11517-020-02182-0.
13.Babaiasl, M., Yang, F., Chen, Y., et al. “Predictingdepth of cut of water-jet in soft tissue simulants basedon finite element analysis with the application tofracture-directed water-jet steerable needles”, In: 2019International Symposium on Medical Robotics (ISMR),IEEE, pp. 1–7 (2019). DOI:10.1109/ISMR.2019.8710183.
14. Babaiasl, M., Yang, F., and Swensen, J.P. “Towardswater-jet steerable needles”, In: 2018 7th IEEEInternational Conference on Biomedical Robotics andBiomechatronics (BioRob), IEEE, pp. 601–608 (2018).DOI: 10.1109/BIOROB.2018.8487645
15.Moradiafrapoli, M. and Marston, J. “High-speed videoinvestigation of jet dynamics from narrow orifices forneedle-free injection”, Chemical EngineeringResearch and Design, 117, pp. 110–121 (2017). DOI:10.1016/j.cherd.2016.10.023.
16.Kraaij, G., Loeve, A.J., and Dankelman, J. “Water jetapplicator for interface tissue removal in minimallyinvasive hip refixation: Testing the principle andddesign of prototype”, Journal of Medical Devices,13(2) (2019). DOI: 10.1115/1.4043293.
17.Liu, Ch., Chen, R., Han, Ch., et al. “Water jet as anovel technique for enamel drilling ex vivo”, PLoSONE, 16(7):e0254787 (2021). DOI: 10.1371/journal.pone.0254787.
18.Abdou, G. and Atalla, N. “Applying waterjet technologyin surgical procedures”, In R Bhatia, K Arai and S Kapoor (Eds.), Proceedings of the Future TechnologiesConference (FTC) 2018 - Volume 1. Advances inIntelligent Systems and Computing, vol. 880, SpringerVerlag, pp. 616-625, Future Technologies Conference,FTC 2018, Vancouver, BC, Canada, 11/15/18 (2019). https://doi.org/10.1007/978-3-030-02686-8-46.
19.Derakhshan, R., Ahmadian, M.T., Chizari, M., et al.“Trimming of sheep spinal cord by waterjet; anexperimental study”, Heliyon, 9(7), e17872 (2023).https://doi.org/10.1016/j.heliyon.2023.e17872.
20.Haynes, W. “CRC handbook of chemistry andphysics”, 94 Ed., Florida: Boca Raton, Florida: CRCPress, Taylor and Francis Group. (2013-2014).
21.Ashman, R.B., Bechtold, J.E., Edwards, W.T., et al. “Invitro spinal arthrodesis implants mechanical testingprotocols”, Journal of Spinal Disorders, 2(4), pp. 274–281 (1989).
22.Edmondston, S.J., Singer, K.P., Day, R.E., et al.“Formalin fixation effects on vertebral bone densityand failure mechanics: An study of human and sheepvertebrae”, Clinical Biomechanics, 9(3), pp. 175-179(1994). DOI: 10.1016/0268-0033(94)90018-3.
23.Eggli, S., Schläpfer, F., Angst, M., et al.“Biomechanical testing of three newly developedtranspedicular multisegmental fixation systems”,European Spine Journal, 1(2), pp.109-116 (1992).DOI: 10.1007/BF00300937.
24.Gurwitz, G.S., Dawson, J.M., McNamara, M.J., et al.“Biomechanical analysis of three surgical approachesfor lumbar burst fractures using short-segmentinstrumentation”, Spine, 18(8), pp. 977-982 (1993). DOI: 10.1097/00007632-199306150-00005.
25.Osti, O.L., Vernon-Roberts, B., and Fraser, R.D.“Anulus tears and intervertebral disc degeneration. Anexperimental study using an animal model”, Spine,15(8), pp. 762-7 (1990). DOI: 10.1097/00007632-199008010-00005.
26.Moore, R.J., Osti, O.L., Vernon-Roberts, B., et al.“Changes in endplate vascularity after an outer anulustear in the sheep”, Spine, 17(8), pp. 874-8 (1992). DOI:10.1097/00007632-199208000-00003.
27.Gunzburg, R., Fraser, R.D., Moore, R., et al. “Anexperimental study comparing percutaneousdiscectomy with chemonucleolysis”, Spine, 18(2), pp.218-226 (1993). DOI: doi: 10.1097/00007632-199302000-00008.
28.Ahlgren, B., Vasavada, A., Brower, R., et al. “Anularincision technique on the strength and multidirectionalflexibility of the healing intervertebral disc”, Spine,19(8), pp. 948-954 (1994). DOI: doi:10.1097/00007632-199404150-00014.
29.Slater, R., Nagel, D., and Smith, R.L. “Biochemistry offusion mass consolidation in the sheep spine”, Journalof Orthopaedic Research, 6(1), pp. 138-144 (1988). DOI: doi: 10.1002/jor.1100060118.
30.Yamamuro, T., Shikata, J., and Okumura, H.“Replacement of the lumbar vertebrae of sheep withceramic prostheses”, Journal of Bone and JointSurgery, 72(5), pp. 889-93 (1990). DOI: doi: 10.1302/0301-620X.72B5.2211778.
31.Nagel, D.A., Kramers, P.C., Rahn, B.A., et al. “Aparadigm of delayed union and nonunion in thelumbosacral joint-A study of motion and bone graftingof the lumbosacral spine in sheep”, Spine, 16, pp. 553-559 (1991). DOI: doi:10.1097/00007632-199105000-00012.
32.Vazquez-Seoane, P., Yoo, J., Zou, D., et al.“Interference screw fixation of cervical grafts-A combined in vitro biomechanical and in vivo animalstudy”, Spine, 18(8), pp. 946-954 (1993). DOI: doi: 10.1097/00007632-199306150-00002.
33.Wilke, H.J., Kettler, A., Wenger, K.H., et al. “Anatomyof the sheep spine and its comparison to the humanspine”, Anatomical Record, 247(4), pp. 542-555(1997). doi:10.1002/(SICI)10970185(199704)247:4<542.
34.Zhang, H., Falkner, P., and Cai, Ch. “In-vivoindentation testing of sheep spinal cord withmeninges”, Mechanics of Biological Systems andMaterials, 6, pp. 99-104 (2016). DOI: doi:10.1007/978-3-319-21455-9_11.
Volume 32, Issue 5
Transactions on Computer Science & Engineering and Electrical Engineering
March and April 2025 Article ID:6743
  • Receive Date: 02 May 2022
  • Revise Date: 16 June 2023
  • Accept Date: 10 December 2023