Effect of sudden pressure on spinal cord and break down (Dura mater, Arachnoid mater and Pia mater) an experimental analysis on threshold levels

Document Type : Research Article

Authors

School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Spinal cord is enveloped by three layers of meninges to protect the central nervous system from mechanical damage. Surgical operation and resection of tumors in the vicinity of spinal cord is complicated and risky because exposes it to probable irreversible damage. Nowadays, to reduce the risk of these operations, attempt is made to remove tumor using safer technique such as waterjet operation. In these methods interaction of waterjet and spinal cord is inevitable. To have safe interaction of operation, a standard development of waterjet criteria is necessary. In the present study a system of waterjet is designed for surgical operation in the vicinity of spinal cord along with limitations and thresholds. For this purpose, spinal cords of 2 years old sheep are considered. Results show that meninges layer is stiff enough to protect sheep spinal cord from rupture for pressures up to 8 bar. The role of different meninges layers to protect internal spinal cord soft tissue in interaction with waterjet is also studied. Effects of angle between nozzle and spinal cord axis, liquid density, nozzle diameter and waterjet velocity on internal soft tissue degradation as well as spread of inky waterjet beneath Arachnoid mater is also investigated in the absence of Dura mater.

Keywords

Main Subjects


References:
1. Maton, A., Jean, H., Charles, W.M., et al. “Human biology and health”, 1st. Ed., Englewood Cliffs, New Jersey, USA: Prentice Hall, ISBN 0-13-981176-1 (1993).
2. Guertin, P.A. “Central pattern generator for locomotion: anatomical, physiological, and pathophysiologicalconsiderations”, Frontiers in Neurology, 3, p. 183 (2013). DOI: 10.3389/fneur.2012.00183.
3. Vasković, J. “Ventricles, meninges and blood vessels of the brain, Retrieved from KENHUB”, Accessed December 21 (2021). https://www.kenhub.com/en/library/anatomy/meninges-of-the-brain-and-spinal-cord.
4. Benowitz, L. and Yin, Y. “Optic Nerve Regeneration”, Arch Ophthalmol, 128(8), pp. 1059-1064 (2010). DOI: 10.1001/archophthalmol.2010.152.
5. Setzer, M., Murtagh, R.D., Murtagh, F.R., et al. “Diffusion tensor imaging tractography in patients with intramedullary tumors: comparison with intraoperative findings and value for prediction of tumor resectability”, J. Neurosurg Spine, 13(3), pp. 371-380 (2010). DOI: 10.3171/2010.3.SPINE09399.
6. Ogawa, Y., Nakagawa, A., Takayama, K., et al. “Pulsed laser-induced liquid jet for skull base tumor removal with vascular preservation through the transsphenoidal approach: a clinical investigation”, Acta Neurochir, 153(4), pp. 823–830 (2011). DOI: 10.1007/s00701-010-0925-x.
7. Nakagawa, A. “Pulsed laser-induced liquid jet system for treatment of sellar and parasellar tumors: Safety evaluation”, J. Neurol Surg a Cent Eur Neurosurg, 76(6), pp. 473-482 (2015). DOI: 10.1055/s-0034-1396436.
8. Endo, T., Takahashi, Y., Nakagawa, A., et al. “Use of actuator-driven pulsed water jet in brain and spinal cord cavernous malformations resection”, Operative Neurosurgery, 11(3), pp. 394-403 (2015). DOI: 10.1227/NEU.0000000000000867.
9. Derakhshan, R.M.T., Ahmadian, M.T., and Firoozbakhsh, K. “Pull-in criteria of a nonclassical microbeam under electric field using homotopy method’’, Scientia Iranica, 25(1), pp. 175-185 (2018). DOI: 10.24200/sci.2017.4315.
10. Alamoud, A.H., Baillot, E., Belabbas, C., et al. “Continuous and pulsed experiments with numerical simulation to dissect pituitary gland tumour by using liquid jet”, Engineering Letters, 25(3), pp. 348-353 (2017).
11. Kok, A.C., den Dunnen, S., Lambers, K.T., et al. “Feasibility study to determine if microfracture surgery using water jet drilling is potentially safe for talar chondral defects in a caprine model”, Cartilage, 13(2), pp. 1627S-1636S (2019). DOI: 10.1177/1947603519880332.
12. Babaiasl, M., Boccelli, S., Chen, Y., et al. “Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications”, Med Biol Eng Comput, 58, pp. 1845- 1872 (2020). https://doi.org/10.1007/s11517-020-02182-0.
13. Babaiasl, M., Yang, F., Chen, Y., et al. “Predicting depth of cut of water-jet in soft tissue simulants based on finite element analysis with the application to fracture-directed water-jet steerable needles”, In: 2019 International Symposium on Medical Robotics (ISMR), IEEE, pp. 1–7 (2019). DOI:10.1109/ISMR.2019.8710183.
14. Babaiasl, M., Yang, F., and Swensen, J.P. “Towards water-jet steerable needles”, In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, pp. 601–608 (2018). DOI: 10.1109/BIOROB.2018.8487645.
15. Moradiafrapoli, M. and Marston, J. “High-speed video investigation of jet dynamics from narrow orifices for needle-free injection”, Chemical Engineering Research and Design, 117, pp. 110–121 (2017). DOI:10.1016/j.cherd.2016.10.023.
16. Kraaij, G., Loeve, A.J., and Dankelman, J. “Water jet applicator for interface tissue removal in minimally invasive hip refixation: Testing the principle and ddesign of prototype”, Journal of Medical Devices, 13(2) (2019). DOI: 10.1115/1.4043293.
17. Liu, Ch., Chen, R., Han, Ch., et al. “Water jet as a novel technique for enamel drilling ex vivo”, PLoS ONE, 16(7):e0254787 (2021). DOI: 10.1371/journal.pone.0254787.
18. Abdou, G. and Atalla, N. “Applying waterjet technology in surgical procedures”, In R Bhatia, K Arai and S Kapoor (Eds.), Proceedings of the Future Technologies Conference (FTC) 2018 - Volume 1. Advances in Intelligent Systems and Computing, vol. 880, Springer Verlag, pp. 616-625, Future Technologies Conference, FTC 2018, Vancouver, BC, Canada, 11/15/18 (2019). https://doi.org/10.1007/978-3-030-02686-8-46.
19. Derakhshan, R., Ahmadian, M.T., Chizari, M., et al. “Trimming of sheep spinal cord by waterjet; an experimental study”, Heliyon, 9(7), e17872 (2023). https://doi.org/10.1016/j.heliyon.2023.e17872.
20. Haynes, W. “CRC handbook of chemistry and physics”, 94 Ed., Florida: Boca Raton, Florida: CRC Press, Taylor and Francis Group. (2013-2014).
21. Ashman, R.B., Bechtold, J.E., Edwards, W.T., et al. “In vitro spinal arthrodesis implants mechanical testing protocols”, Journal of Spinal Disorders, 2(4), pp. 274– 281 (1989).
22. Edmondston, S.J., Singer, K.P., Day, R.E., et al. “Formalin fixation effects on vertebral bone density and failure mechanics: An study of human and sheep vertebrae”, Clinical Biomechanics, 9(3), pp. 175-179 (1994). DOI: 10.1016/0268-0033(94)90018-3.
23. Eggli, S., Schlapfer, F., Angst, M., et al. “Biomechanical testing of three newly developed transpedicular multisegmental fixation systems”, European Spine Journal, 1(2), pp.109-116 (1992). DOI: 10.1007/BF00300937.
24. Gurwitz, G.S., Dawson, J.M., McNamara, M.J., et al. “Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation”, Spine, 18(8), pp. 977-982 (1993). DOI: 10.1097/00007632-199306150-00005.
25. Osti, O.L., Vernon-Roberts, B., and Fraser, R.D. “Anulus tears and intervertebral disc degeneration. An experimental study using an animal model”, Spine, 15(8), pp. 762-7 (1990). DOI: 10.1097/00007632-199008010-00005.
26. Moore, R.J., Osti, O.L., Vernon-Roberts, B., et al. “Changes in endplate vascularity after an outer anulus tear in the sheep”, Spine, 17(8), pp. 874-8 (1992). DOI:10.1097/00007632-199208000-00003.
27. Gunzburg, R., Fraser, R.D., Moore, R., et al. “An experimental study comparing percutaneous discectomy with chemonucleolysis”, Spine, 18(2), pp.b218-226 (1993). DOI: doi: 10.1097/00007632-199302000-00008.
28. Ahlgren, B., Vasavada, A., Brower, R., et al. “Anular incision technique on the strength and multidirectional flexibility of the healing intervertebral disc”, Spine, 19(8), pp. 948-954 (1994). DOI: doi:10.1097/00007632-199404150-00014.
29. Slater, R., Nagel, D., and Smith, R.L. “Biochemistry of fusion mass consolidation in the sheep spine”, Journal of Orthopaedic Research, 6(1), pp. 138-144 (1988). DOI: doi: 10.1002/jor.1100060118.
30. Yamamuro, T., Shikata, J., and Okumura, H. “Replacement of the lumbar vertebrae of sheep with ceramic prostheses”, Journal of Bone and Joint Surgery, 72(5), pp. 889-93 (1990). DOI: doi: 10.1302/0301-620X.72B5.2211778.
31. Nagel, D.A., Kramers, P.C., Rahn, B.A., et al. “A paradigm of delayed union and nonunion in the lumbosacral joint-A study of motion and bone grafting of the lumbosacral spine in sheep”, Spine, 16, pp. 553- 559 (1991). DOI: doi:10.1097/00007632-199105000-00012.
32. Vazquez-Seoane, P., Yoo, J., Zou, D., et al. “Interference screw fixation of cervical grafts-A combined in vitro biomechanical and in vivo animal study”, Spine, 18(8), pp. 946-954 (1993). DOI: doi: 10.1097/00007632-199306150-00002.
33. Wilke, H.J., Kettler, A., Wenger, K.H., et al. “Anatomy of the sheep spine and its comparison to the human spine”, Anatomical Record, 247(4), pp. 542-555 (1997). doi:10.1002/(SICI)10970185(199704)247:4<542.
34. Zhang, H., Falkner, P., and Cai, Ch. “In-vivo indentation testing of sheep spinal cord with meninges”, Mechanics of Biological Systems and Materials, 6, pp. 99-104 (2016). DOI: doi:10.1007/978-3-319-21455-9_11.
Volume 32, Issue 5
Transactions on Computer Science & Engineering and Electrical Engineering
March and April 2025 Article ID:6743
  • Receive Date: 02 May 2022
  • Revise Date: 16 June 2023
  • Accept Date: 10 December 2023