References:
1.ASHRAE, ANSI/ASHRAE Standard 55-2020“Thermal Environmental Conditions for HumanOccupancy”, Atlanta, GA, USA (2020).
2.Stavrakakis, G.M., Zervas, P.L., Sarimveis, H., et al.“Optimization of window-openings design for thermalcomfort in naturally ventilated buildings”, AppliedMathematical Modelling, 36, pp. 193–211 (2012). https://doi.org/10.1016/j.apm.2011.05.052.
3.Izadyar, N., Miller, W., Rismanchi, B., et al. “Impactsof façade openings’ geometry on natural ventilation andoccupants’ perception: A review”, Building andEnvironment, 170, 106613 (2020).https://doi.org/10.1016/j.buildenv.2019.106613.
4.Omrani, S., Garcia-Hansen, V., Capra, B.R., et al.“Effect of natural ventilation mode on thermal comfortand ventilation performance: Full-scale measurement”,Energy and Buildings, 156, pp. 1–16 (2017). https://doi.org/10.1016/j.enbuild.2017.09.061.
5.Ahmed, T., Kumar, P., and Mottet, L. “Naturalventilation in warm climates: The challenges of thermalcomfort, heatwave resilience and indoor air quality”, Renewable and Sustainable Energy Reviews, 138(110669) (2021). https://doi.org/10.1016/j.rser.2020.110669.
6.Moosavi, L., Mahyuddin, N., Ghafar, N.A., et al.“Thermal performance of atria: An overview of naturalventilation effective designs”, Renewable andSustainable Energy Reviews, 34, pp. 654–670 (2014). https://doi.org/10.1016/j.rser.2014.02.035.
7.Aflaki, A., Mahyuddin, N., and Baharum, M.R. “Theinfluence of single-sided ventilation towards the indoorthermal performance of high-rise residential building: Afield study”, Energy and Buildings, 126, pp. 146–158(2016). https://doi.org/10.1016/j.enbuild.2016.05.017.
8.Kleiven, T. “Natural Ventilation in Buildings.Architectural concepts, consequences and possibilities”,PhD thesis at Department of Architectural Design,History and Technology, NTNU (2003).
9.Stabat, P., Caciolo, M., and Marchio, D. “Progress onsingle-sided ventilation techniques for buildings”,Advances in Building Energy Research, 6, pp. 212–241(2012). https://doi.org/10.1080/17512549.2012.740903.
10.Fan, S., Davies Wykes, M.S., Lin, W.E., et al. “A full-scalefield study for evaluation of simple analytical models ofcross ventilation and single-sided ventilation”, Buildingand Environment, 18, 107386 (2021). https://doi.org/10.1016/j.buildenv.2020.107386.
11.Zhang, H., Yang, D., Tam, V.W.Y, et al. “A criticalreview of combined natural ventilation techniques insustainable building”, Renewable and SustainableEnergy Reviews, 141, 110795 (2021).https://doi.org/10.1016/j.rser.2021.110795.
12.Zhang, X., Weerasuriya, A.U., and Tse, K.T. “CFDsimulation of natural ventilation of a generic building invarious incident wind directions: Comparison ofturbulence modelling, evaluation methods, and ventilationmechanisms”, Energy and Buildings, 229, 110516 (2020).https://doi.org/10.1016/j.enbuild.2020.110516.
13.Perén, J.I., van Hooff, T., Leite, B.C.C., et al. “CFDanalysis of cross-ventilation of a generic isolatedbuilding with asymmetric opening positions: Impact ofroof angle and opening location”, Building andEnvironment, 85, pp. 263–276 (2015).https://doi.org/10.1016/j.buildenv.2014.12.007.
14.Arinami, Y., Akabayashi, S., Tominaga, Y., et al.“Performance evaluation of single-sided naturalventilation for generic building using large-eddysimulations: Effect of guide vanes and adjacentobstacles”, Building and Environment, 154, pp. 68–80(2019). https://doi.org/10.1016/j.buildenv.2019.01.021.
15.Ghadiri, M.H., Lukman, N., Ibrahim, N., et al.“Computational analysis of wind-driven natural ventilation in a two sided rectangular wind catcher”, International Journal of Ventilation, 12, pp. 51–61 (2013). https://doi.org/10.1080/14733315.2013.11684002.
16.Elshafei, G., Negm, A., Bady, M., et al. “Numerical andexperimental investigations of the impacts of windowparameters on indoor natural ventilation in a residentialbuilding”, Energy and Buildings, 141, pp. 321–332(2017). https://doi.org/10.1016/j.enbuild.2017.02.055.
17.Izadyar, N., Miller, W., Rismanchi, B., et al. “Anumerical investigation of balcony geometry impact onsingle-sided natural ventilation and thermal comfort”,Building and Environment, 177, 106847 (2020).https://doi.org/10.1016/j.buildenv.2020.106847.
18.Chu, C.R. and Chiang, B.F. “Wind-driven crossventilation with internal obstacles”, Energy andBuildings, 67, pp. 201–209 (2013).https://doi.org/10.1016/j.enbuild.2013.07.086.
19.Larriva, M.T.B., Mendes A.S., and Forcada, N. “Theeffects of climatic conditions on occupants’ thermalcomfort in naturally ventilated nursing house”, Buildingand Environment, 214, 108930 (2022). https://doi.org/10.1016/j.buildenv.2022.108930.
20.Nomura, M. and Hiyama, K. “A review: Naturalventilation performance of office buildings in Japan”,Renewable and Sustainable Energy Reviews, 74, pp.746–754 (2017). https://doi.org/10.1016/j.rser.2017.02.083.
21.Wang, X., Yang, L., Gao, S., et al. “Thermal comfort innaturally ventilated university classrooms: A seasonalfiels study in Xi’an, China”, Energy and Buildings, 247,111126 (2021).https://doi.org/10.1016/j.enbuild.2021.111126.
22.Kubota, T., Zakaria, M.A., Abe, S., et al. “Thermalfunctions of internal courtyards in traditional Chineseshophouses in the hot-humid climate of Malaysia”,Building and Environment, 112, pp. 115–131 (2017).https://doi.org/10.1016/j.buildenv.2016.11.005.
23.Aflaki, A., Hirbodi, K., Mahyuddin, N., et al.“Improving the air change rate in high-rise buildingsthrough a transom ventilation panel: A case study”,Building and Environment, 147, pp. 35–49 (2019). https://doi.org/10.1016/j.buildenv.2018.10.011.
24.Martins, N.R. and da Graça, G.C. “Validation ofnumerical simulation tools for wind-driven naturalventilation design”, Building Simulation, 9, pp. 75–87(2016). https://doi.org/10.1007/s12273-015-0251-6.
25.Chu, C.R., Chiu, Y.H., Tsai, Y.T., et al. “Wind-drivennatural ventilation for buildings with two openings onthe same external wall”, Energy and Buildings, 108, pp.365–372 (2015).https://doi.org/10.1016/j.enbuild.2015.09.041.
26.Dehghani, H., Dehghan, A.A., Ghanbaran, H., et al. “Anumerical and experimental performance analysis of a four-sided wind tower adjoining parlor and courtyard at different wind incident angles”, Energy and Buildings, 172, pp. 525–536 (2018). https://doi.org/10.1016/j.enbuild.2018.05.006.
27.Lo, J., Banks, D., and Novoselac, A. “Combined windtunnel and CFD analysis for indoor airflow prediction of wind-driven cross ventilation”, Building andEnvironment, 60, pp. 12–23 (2013).https://doi.org/10.1016/j.buildenv.2012.10.022.
28.Design Builder software Ltd., (2021). https://designbuilder.co.uk/helpv2/Content/Natural_ventilation_modelling.html.
29.DOE, EnergyPlus Version 9.6.0 DocumentationEngineering Reference. U.S. Department of Energy,Available: https://energyplus.net/ (2021).
30.Yang, L., Zhang, G., Li, Y., et al. “Investigatingpotential of natural driving forces for ventilation in fourmajor cities in China”, Building and Environment, 40,pp. 738–746 (2005).https://doi.org/10.1016/j.buildenv.2004.08.023.
31.Abd Rhaman, N.M., Haw, L.C., Fazlizan, A., et al.“Thermal comfort assessment of naturally ventilatedpublic hospital wards in tropics”, Building andEnvironment, 207, 108480 (2022).https://doi.org/10.1016/j.buildenv.2021.108480.
32.Gu, L. “Airflow network modeling in energyplus”,Build. Simul., 10, FSEC technical report (2007).
33.Wang, J., Wang, S., Zhang, T., et al. “Assessment ofsingle-sided natural ventilation driven by buoyancyforces through variable window configurations”, Energyand Buildings, 139, pp. 762–779 (2017).https://doi.org/10.1016/j.enbuild.2017.01.070.
34.Swami, M.V. and Chandra, S. “Correlations forpressure distribution on buildings and calculation ofnatural-ventilation airflow”, ASHRAE Trans., 94(1), pp.243–266 (1988).
35.U.D. of Energy, “International Weather for energycalculations: IWEC” (2021). Available: http://www.eere.energy.gov/buildings/energyplus/cfm/weather.