References:
1. Unger, K. "Carving his own unique niche", In Symbols and Stone, Science, 314(5798), pp. 412-413 (2006). DOI: 10.1126/ science.314.5798.412.
2. Alexander, V., Anna, V., and Shreyes, M. "Robots in machining", CIRP Annals-Manufacturing Technology, 68, pp. 799-822 (2019). DOI: 10.1016/j.cirp.2019.05.009.
3. Shaked, T., Sinai., K.B., and Sprecher, A. "Adaptive robotic stone carving: Method, tools, and experiments", Automation in Construction, 129, p. 103809 (2010). DOI: 10.1016/j.autcon.2021.103809.
4. Wang, J., Huang, S.G., Huang , J.X., et al. "Parameter analysis and modelling of grinding complex-shaped granite by diamond tools based on a robot stone machining system", Int J Abra Tech, 10(1), pp. 62- 82 (2020). DOI: 10.1504/IJAT.2020.109617.
5. Yuan, L., Pan, Z.X., Ding, D.H., et al. "A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism", IEEE/ASME Transactions on Mechatronics, 23(5), pp. 2240-2251 (2018). DOI: 10.1109/TMECH.2018.2864652.
6. Yin, F.C., Ji, Q.Z., and Wang, C.Z. "Research on machining error prediction and compensation technology for a stone-carving robotic manipulator", International Journal of Advanced Manufacturing Technology, 115, pp. 1683-1700 (2021). DOI: 10.1007/s00170-021- 07230-z.
7. Xiong, Q.Q., Wang, J.X., and Zhou, Q.H. "Prediction model of machining errors based on precision and process parameters of machine tools", Acta Aeronautica et Astro-nautica Sinica, 39(8), pp. 267-275 (2018). DOI: 10.7527/S1000-6893.2018.21713.
8. Wang, X.S., Kang, M., and Fu, X.H. "Prediction model of surface roughness in lenses precision turning", Journal of Mechanical Engineering, 49(15), pp. 192- 198 (2013). DOI: 10.1007/s00170-013-5231-3.
9. Han, J.H. and Requicha, A.A. "Integration of feature based design and feature recognition", Computer- Aided Design, 29(5), pp. 393-403 (1997). DOI: 10.1016/S0010-4485(96)00079-6.
10. Muhammad, A.A., Kashif, I., and Muhammad, J. "Evaluation of surface quality and mechanical properties of squeeze casted AA2026 aluminum alloy using response surface methodology", The International Journal of Advanced Manufacturing Technology, 103, pp. 4041-4054 (2019). DOI: 10.1007/s00170-019-03836-6.
11. Habib, S.S. "Study of the parameters in electrical discharge machining through response surface methodology approach", Applied Mathematical Modelling, 33(12), pp. 4397-4407 (2019). DOI: 10.1016/j.apm.2009.03.021.
12. Sarikaya, M. and Gullu, A. "Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL", Journal of Cleaner Production, 65(15), pp. 604-616 (2014). DOI: 10.1016/j.jclepro.2013.08.040.
13. Ghodsiyeh, D., Golshan, A., and Izman, S. "Multiobjective process optimization of wire electrical discharge machining based on response surface methodology", Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36, pp. 301-313 (2014). DOI: 10.1007/s40430-013-0079-x.
14. Lmalghan, R., Karthik, M.C., and Arunkumar, S. "Machining parameters optimization of AA6061 using response surface methodology and particle swarm optimization", International Journal of Precision Engineering and Manufacturing, 19, pp. 695-704 (2018). DOI: 10.1007/s12541-018-0083-2.
15. Unune, D.R. and Mali, H.S. "Parametric modeling and optimization for abrasive mixed surface electro discharge diamond grinding of Inconel 718 using response surface methodology", The International Journal of Advanced Manufacturing Technology, 93, pp. 3859- 3872 (2017). DOI: 10.1007/s00170-017-0806-z.
16. Lin, Y.C., Huang, J.Y., Wei, J.Y., et al. "Modeling and optimization of high-grade compacted graphite iron milling force and surface roughness via response surface methodology", Australian Journal of Mechanical Engineering, 16(1), pp. 50-57 (2018). DOI: 10.1080/14484846.2017.1296531.
17. Lu, X.H., Jia, Z.Y., Wang, H., et al. "The effect of cutting parameters on micro-hardness and the prediction of Vickers hardness based on a response surface methodology for micro-milling Inconel 718", Measurement, 140, pp. 56-62 (2019). DOI: 10.1016/j.measurement.2019.03.037.
18. Zhang, H., Zhang, J.S., Wang, Z., et al. "A new frame saw machine by diamond segmented blade for cutting granite", Diamond and Related Materials, 69, pp. 40- 48 (2016). DOI: 10.1016/j.diamond.2016.07.003.
19. Zhang, H., Zhang, J.S., and Wang, S. "Comparison of wear performance of diamond tools in frame sawing with different trajectories", Diamond and Related Materials, 78, pp. 178-185 (2019). DOI: 10.1016/j.ijrmhm.2018.09.012.
20. Sun, Q., Zhang, J.S., Wang, Z., et al. "Segment wear characteristics of diamond frame saw when cutting different granite types", Diamond and Related Materials, 68, pp. 143-151 (2016). DOI: 10.1016/j.diamond.2016.06.018.
21. Sun, Q., Zhang, J.S., Wang, Z., et al. "Force and segment wear in various granites cutting by diamond frame saw", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of the Mechanical Engineering Sciences, 203(210), pp. 1989-1996 (2017). DOI: 10.1177/0954406217742937.
22. Wang, F.Z., Liu, S.Y., Guo, Z.Y., et al. "Analysis of cutting forces and chip formation in milling of marble", The International Journal of Advanced Manufacturing Technology, 108, pp. 2907-2916 (2020). DOI: 10.1007/s00170-020-05575-5.
23. Ozfirat, P.M. "An integer programming approach for the three-dimensional cutting planning problem of marble processing industry", The International Journal of Advanced Manufacturing Technology, 59, pp. 1057-1064 (2012). DOI: 10.1007/s00170-011-3574-1.
24. Mehrannia, N., Kalantary, F., and Ganjian, N. "Experiment study on soil improvement with stone columns and granular blankets", Journal of Central South University, 25, pp. 866-878 (2018). DOI: 10.1007/s11771- 018-3790-z.
25. Kalra, G. and Gupta, A.K. "Multi-response optimization of machining parameters in inconel 718 end milling process through RSM-MOGA", The Scientific Temper, 13, pp. 01-13 (2022). DOI: 10.3390/machines12050335.
26. Zhou, T. "Analysis of machined surface topography of AISI M2 in hard turning based on boxbehnken design", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 095440542311572 (2023). DOI: 10.1177/09544054231157261.
27. Choi, S., Lee, C., and Kim. D. "Experimental investigation for multiresponse optimization in rotary ultrasonic side milling of quartz", The International Journal of Advanced Manufacturing Technology, 122, pp. 1583-1597 (2022). DOI: 10.1007/s00170-022-09993-5.
28. Okokpujie, I.P., Tartibu, L.K., and Okokpujie. K. "Implementation of Box-Behnken design to study the factors interaction impacts and modelling of the surface roughness of AL 6063 alloys during turning operations", International Journal on Interactive Design and Manufacturing (IJIDeM) pp. 1-11 (2023). DOI:10.1007/S12008-023-01278-9/METRICS.
29. Li, J., Zuo, W., and E, J.Q. "Multi-objective optimization of mini U-channel cold plate with SiO2 nano fluid by RSM and NSGA-II", Energy, 242, 123039 (2022). DOI: 10.1016/j.energy.2021.123039.
30. Patel, K.A. and Brahmbhatt, P.K. "Response surface methodology based desirability approach for optimization of roller burnishing process parameter", Journal of the Institution of Engineers (India): Series C, 99, pp. 729-736 (2018). DOI: 10.1007/s40032-017-0368-8.
31. Hazir, E. and Ozcan. T. "Response surface methodology integrated with desirability function and genetic algorithm approach for the optimization of CNC machining parameters", Arabian Journal for Science and Engineering, 44, pp. 2795-2809 (2019). DOI: 10.1007/s13369-018-3559-6.