Heat generation effects on MHD double diffusive of Tio2-Cu/water hybrid nanofluids in a lid-driven wavy porous cavity using LTNE condition

Document Type : Research Article

Authors

1 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71515, Egypt

2 Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia

3 Department of Mathematics, Faculty of Engineering, Sphinx University, New Assiut City P.O. Box:10, Egypt

4 - Department of Mathematics, Faculty of Science, Assiut University, Assiut 71515, Egypt - Faculty of Basic Sciences, King Salman International University, South Sinai 46612, Egypt - Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia

Abstract

In this manuscript, we study (HGE) on magnetohydrodynamic mixed convection in hybrid nanofluid (Tio2-Cu/Water) in the wavy porous cavity with a lid-driven using local thermal non-equilibrium model (LTNEM) condition. The impacts of the inclined magnetic field, internal heat generation, and the volume of the solid fraction on the flow and heat structures are investigated. This kind of problem may be viable in the refrigeration systems of microelectronic devices and wall bricks, systems of underground cable, and mass and heat transfer occurring in chemical reactors. The dominant equations and the conditions of the boundaries are converted for dimensionless equations. These equations are solved numerically using the SIMPLER algorithm based on the finite volume method. The results are represented graphically by streamlines, isotherms, iso-concentrations, local Nusselt numbers, local Sherwood numbers, and average Nusselt numbers. The results showed that the isothermal wavy walls and the internal heat source had an essential effect on the fluid flow and heat transfer. Furthermore, the position of the heat source and large values of the heat generation parameter enhanced the rate of heat transfer and decreased the local Nusselt and Sherwood numbers. On the other hand, the rise of the Hartmann number restricted nanofluid transport. Moreover, the

Keywords

Main Subjects


References:
1.Mansour, M.A. and Bakier, M.A. “Free convection heattransfer in complex-wavy-wall enclosed cavity filled withnanofluid”, International Communications in Heat andMass Transfer, 44, pp. 108–115 (2013).https://doi.org/10.1016/j.icheatmasstransfer.2013.02.015.
2.Rashed, Z.Z., Mansour, M.A., Attia, M.A., et al.“Numerical study of radiative impacts on a magneto-convective flow confined an inclined two-sided wavyenclosure using hybrid nanofluid” Physica Scripta, 96(2),25216 (2020). https://doi.org/10.1088/1402-4896/abd1b1.
3.Sheikholeslami, M. and Oztop, H.F. “MHD freeconvection of nanofluid in a cavity with sinusoidal wallsby using CVFEM” Chinese Journal of Physics, 55(6), pp.2291–2304 (2017). https:// doi.org/10.1016/j.cjph.2017.09.006.
4.Jafari, A., Zamankhan, P., Mousavi, S.M., et al.,“Numerical investigation of blood flow. Part II: Incapillaries”, Communications in Nonlinear Science andNumerical Simulation, 14(4), pp. 1396–1402 (2009).https://doi.org/10.1016/j.cnsns.2008.04.007.
5.Ibitoye, S.E., Adegun, I.K., Omoniyi, P.O., et al.“Numerical investigation of thermo-physical properties of the non-newtonian fluid in a modeled intestine”, Journalof Bioresources and Bioproducts, 5(3), pp. 211–221(2020). https://doi.org/10.1016/j.jobab.2020.07.007.
6.Kozu, H., Kobayashi, I., Neves. M.A., et al. “PIV andCFD studies on analyzing intragastric flow phenomenainduced by peristalsis using a human gastric flowsimulator”, Food & Function, 5(8), pp. 1839–1847(2014). https://doi.org/10.1039/C4FO00041B.
7.Ferrua, M.J. and Singh, R.P. “Modeling the fluiddynamics in a human stomach to gain insight of fooddigestion”, Journal of Food Science, 75(7), pp. R151–R162 (2010). https://doi.org/10.1111/j.1750-3841.2010.01748.x.
8.Klębowski, B., Depciuch, J., Parlińska-Wojtan, M., et al.“Applications of noble metal-based nanoparticles inmedicine”, International Journal of Molecular Sciences,19(12), 4031 (2018). https://doi.org/10.3390/ijms19124031.
9.Qin, Z. and Bischof, J.C. “Thermophysical and biologicalresponses of gold nanoparticle laser heating”, ChemicalSociety Reviews, 41(3), pp. 1191–1217 (2012).https://doi.org/10.1039/C1CS15184C.
10. Jain, S., Hirst, D., and O’Sullivan, J. “Gold nanoparticlesas novel agents for cancer therapy”, The British Journalof Radiology, 85(1010), pp. 101–113 (2014).https://doi.org/10.1259/bjr/59448833.
11. Skinner, M.G., Iizuka, M.N., Kolios, M.C., et al. “Atheoretical comparison of energy sources-microwave,ultrasound and laser-for interstitial thermal therapy”,Physics in Medicine & Biology, 43(12), 3535 (1998). https://doi.org/10.1088/0031-9155/43/12/011.
12. Ismaeel, A.M. “A mathematical model for photothermaltherapy of spherical tumors”, PhD Diss., University ofGlasgow (2020). https://doi.org/10.5525/gla.thesis.80268.
13. Arami, H., Khandhar, A., Liggitt, D., et al. “In vivodelivery, pharmacokinetics, biodistribution, and toxicityof iron oxide nanoparticles”, Chemical Society Reviews,44(23), pp. 8576–8607 (2015). https://doi.org/10.1039/C5CS00541H.
14. Cherukuri, P., Glazer, E.S., and Curley, S.A. “Targetedhyperthermia using metal nanoparticles”, AdvancedDrug Delivery Reviews, 62(3), pp. 339–345 (2010).https://doi.org/10.1016/j.addr.2009.11.006.
15. Kaur, P., Aliru, M.L., Chadha, A.S.A., et al.“Hyperthermia using nanoparticles–Promises andpitfalls”, International Journal of Hyperthermia, 32(1),pp. 76–88 (2016). https://doi.org/10.3109/02656736.2015.1120889.
16. Buongiorno, J. “Convective transport in nanofluids”, J.Heat Transfer, 128(3), pp. 240-250 (2006). https://doi.org/10.1115/1.2150834.
17. Wang, X., Xu, X., and Choi, S.U.S. “Thermalconductivity of nanoparticle-fluid mixture”, Journal ofThermophysics and Heat Transfer, 13(4), pp. 474–480(1999). https://doi.org/10.2514/2.6486.
18. Hady, F., Ibrahim, F., El-Hawary, H., et al. “Effect ofsuction/injection on natural convective boundary-layerflow of a nanofluid past a vertical porous plate through aporous medium”, Journal of Modern Methods inNumerical Mathematics, 3(1), pp. 53-63 (2012).
19. Nguyen, T.K., Saidizad, A., Jafaryar, M., et al. “Influence of various shapes of CuO nanomaterial on nanofluidforced convection within a sinusoidal channel withobstacles”, Chemical Engineering Research and Design,146, pp. 478–485 (2019). https://doi.org/10.1016/j.cherd.2019.04.030.
20. Elshehabey, H.M., Raizah, Z., Öztop, H.F., et al. “MHDnatural convective flow of Fe3O4− H2O ferrofluids in aninclined partial open complex-wavy-walls ringedenclosures using non-linear Boussinesq approximation”,International Journal of Mechanical Sciences, 170,105352 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105352.
21. Babar, H. and Ali, H. M. “Towards hybrid nanofluids:preparation, thermophysical properties, applications, andchallenges”, Journal of Molecular Liquids, 281, pp. 598–633 (2019). https://doi.org/10.1016/j.molliq.2019.02.102.
22. Sarkar, J., Ghosh, P., and Adil, A. “A review on hybridnanofluids: recent research, development, andapplications” Renewable and Sustainable EnergyReviews, 43, pp. 164–177 (2015). https://doi.org/10.1016/j.rser.2014.11.023.
23. Ismaeel, A.M., Mansour, M.A., Ibrahim, F.S., et al.“Numerical simulation for nanofluid extravasation froma vertical segment of a cylindrical vessel into thesurrounding tissue at the microscale”, AppliedMathematics and Computation, 417, 126758 (2022). https://doi.org/10.1016/j.amc.2021.126758.
24. Ismaeel, A.M., Kamel, R.S., Hedar, M.R., et al.“Numerical simulation for a Casson nanofluid over aninclined vessel surrounded by hot tissue at themicroscale”, SN Applied Sciences, 5(8), p. 223 (2023). https://doi.org/10.1007/s42452-023-05436-2.
25. Hady, F., Ibrahim, F., El-Hawary, H., et al. “Forcedconvection flow of nanofluids past power-law stretchinghorizontal plates”, Applied Mathematics, 3(2), pp. 121-126 (2012). https://doi.org/10.4236/am.2012.32019.
26. Uddin, M.J., Rasel, S.K., Rahman, M.M., et al. “Naturalconvective heat transfer in a nanofluid-filled squarevessel having a wavy upper surface in the presence of amagnetic field”, Thermal Science and EngineeringProgress, 19, 100660 (2020). https://doi.org/10.1016/j.tsep.2020.100660.
27. Cho, C.C. “Effects of a porous medium and wavy surfaceon heat transfer and entropy generation of Cu-waternanofluid natural convection in a square cavitycontaining partially-heated surface”, InternationalCommunications in Heat and Mass Transfer, 119,104925 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104925.
28. Misirlioglu, A., Baytas, A.C., and Pop, I. “Freeconvection in a wavy cavity filled with a porousmedium” International Journal of Heat and MassTransfer, 48(9), pp. 1840–1850 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.005.
29. Sheremet, M.A., Oztop, H.F., and Pop, I. “MHD naturalconvection in an inclined wavy cavity with corner heaterfilled with a nanofluid”, Journal of Magnetism andMagnetic Materials, 416, pp. 37–47 (2016). https://doi.org/10.1016/j.jmmm.2016.04.061.
30. Ahmed, S.E. and Rashed, Z.Z. “MHD natural convectionin a heat-generating porous medium-filled wavyenclosures using Buongiorno’s nanofluid model”, CaseStudies in Thermal Engineering, 14, 100430 (2019). https://doi.org/10.1016/j.csite.2019.100430.
31. Abdulkadhim, A., Hamzah, H.K., Ali, F.H., et al. “Effectof heat generation and heat absorption on naturalconvection of Cu-water nanofluid in a wavy enclosureunder magnetic field”, International Communications inHeat and Mass Transfer, 120, 105024 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.105024.
32. Ahmed, S.E. “Effect of fractional derivatives onnatural convection in a complex‐wavy‐wallsurrounded enclosure filled with porous mediausing nanofluids”, ZAMM‐Journal of AppliedMathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 100(1), e201800323 (2020). https://doi.org/doi.org/10.1002/zamm.201800323.
33. Hussain, S., Öztop, H.F., Mehmood, K., et al. “Effects ofinclined magnetic field on mixed convection in ananofluid filled the double lid-driven cavity withvolumetric heat generation or absorption using finiteelement method”, Chinese Journal of Physics, 56(2), pp.484–501 (2018). https://doi.org/10.1016/j.cjph.2018.02.002.
34. Yusuf, T.A., Mabood, F., Khan, W.A., et al.“Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with non-linear radiation: Darcy-Forchhiemer’smodel”, Alexandria Engineering Journal, 59(6), pp.5247–5261 (2020). https://doi.org/10.1016/j.aej.2020.09.053.
35. Cheong, H.T., Sivasankaran, S., and Bhuvaneswari, M.“Natural convection in a wavy porous cavity withsinusoidal heating and internal heat generation”International Journal of Numerical Methods for Heat &Fluid Flow, 27(2), pp. 287-309 (2017). https://doi.org/10.1108/HFF-07-2015-0272.
36. Ahmed, S.E., Mansour, M.A., Rashad, A.M. , et al.“MHD natural convection from two heating modes infined triangular enclosures filled with porous mediausing nanofluids”, Journal of Thermal Analysis andCalorimetry, 139(5), pp. 3133–3149 (2019). https://doi.org/10.1007/s10973-019-08675-x.
Volume 32, Issue 3
Transactions on Nanotechnology
January and February 2025 Article ID:7353
  • Receive Date: 28 November 2022
  • Revise Date: 31 May 2023
  • Accept Date: 27 November 2023