References:
1.Mansour, M.A. and Bakier, M.A. “Free convection heattransfer in complex-wavy-wall enclosed cavity filled withnanofluid”, International Communications in Heat andMass Transfer, 44, pp. 108–115 (2013).https://doi.org/10.1016/j.icheatmasstransfer.2013.02.015.
2.Rashed, Z.Z., Mansour, M.A., Attia, M.A., et al.“Numerical study of radiative impacts on a magneto-convective flow confined an inclined two-sided wavyenclosure using hybrid nanofluid” Physica Scripta, 96(2),25216 (2020). https://doi.org/10.1088/1402-4896/abd1b1.
3.Sheikholeslami, M. and Oztop, H.F. “MHD freeconvection of nanofluid in a cavity with sinusoidal wallsby using CVFEM” Chinese Journal of Physics, 55(6), pp.2291–2304 (2017). https:// doi.org/10.1016/j.cjph.2017.09.006.
4.Jafari, A., Zamankhan, P., Mousavi, S.M., et al.,“Numerical investigation of blood flow. Part II: Incapillaries”, Communications in Nonlinear Science andNumerical Simulation, 14(4), pp. 1396–1402 (2009).https://doi.org/10.1016/j.cnsns.2008.04.007.
5.Ibitoye, S.E., Adegun, I.K., Omoniyi, P.O., et al.“Numerical investigation of thermo-physical properties of the non-newtonian fluid in a modeled intestine”, Journalof Bioresources and Bioproducts, 5(3), pp. 211–221(2020). https://doi.org/10.1016/j.jobab.2020.07.007.
6.Kozu, H., Kobayashi, I., Neves. M.A., et al. “PIV andCFD studies on analyzing intragastric flow phenomenainduced by peristalsis using a human gastric flowsimulator”, Food & Function, 5(8), pp. 1839–1847(2014). https://doi.org/10.1039/C4FO00041B.
7.Ferrua, M.J. and Singh, R.P. “Modeling the fluiddynamics in a human stomach to gain insight of fooddigestion”, Journal of Food Science, 75(7), pp. R151–R162 (2010). https://doi.org/10.1111/j.1750-3841.2010.01748.x.
8.Klębowski, B., Depciuch, J., Parlińska-Wojtan, M., et al.“Applications of noble metal-based nanoparticles inmedicine”, International Journal of Molecular Sciences,19(12), 4031 (2018). https://doi.org/10.3390/ijms19124031.
9.Qin, Z. and Bischof, J.C. “Thermophysical and biologicalresponses of gold nanoparticle laser heating”, ChemicalSociety Reviews, 41(3), pp. 1191–1217 (2012).https://doi.org/10.1039/C1CS15184C.
10. Jain, S., Hirst, D., and O’Sullivan, J. “Gold nanoparticlesas novel agents for cancer therapy”, The British Journalof Radiology, 85(1010), pp. 101–113 (2014).https://doi.org/10.1259/bjr/59448833.
11. Skinner, M.G., Iizuka, M.N., Kolios, M.C., et al. “Atheoretical comparison of energy sources-microwave,ultrasound and laser-for interstitial thermal therapy”,Physics in Medicine & Biology, 43(12), 3535 (1998). https://doi.org/10.1088/0031-9155/43/12/011.
12. Ismaeel, A.M. “A mathematical model for photothermaltherapy of spherical tumors”, PhD Diss., University ofGlasgow (2020). https://doi.org/10.5525/gla.thesis.80268.
13. Arami, H., Khandhar, A., Liggitt, D., et al. “In vivodelivery, pharmacokinetics, biodistribution, and toxicityof iron oxide nanoparticles”, Chemical Society Reviews,44(23), pp. 8576–8607 (2015). https://doi.org/10.1039/C5CS00541H.
14. Cherukuri, P., Glazer, E.S., and Curley, S.A. “Targetedhyperthermia using metal nanoparticles”, AdvancedDrug Delivery Reviews, 62(3), pp. 339–345 (2010).https://doi.org/10.1016/j.addr.2009.11.006.
15. Kaur, P., Aliru, M.L., Chadha, A.S.A., et al.“Hyperthermia using nanoparticles–Promises andpitfalls”, International Journal of Hyperthermia, 32(1),pp. 76–88 (2016). https://doi.org/10.3109/02656736.2015.1120889.
16. Buongiorno, J. “Convective transport in nanofluids”, J.Heat Transfer, 128(3), pp. 240-250 (2006). https://doi.org/10.1115/1.2150834.
17. Wang, X., Xu, X., and Choi, S.U.S. “Thermalconductivity of nanoparticle-fluid mixture”, Journal ofThermophysics and Heat Transfer, 13(4), pp. 474–480(1999). https://doi.org/10.2514/2.6486.
18. Hady, F., Ibrahim, F., El-Hawary, H., et al. “Effect ofsuction/injection on natural convective boundary-layerflow of a nanofluid past a vertical porous plate through aporous medium”, Journal of Modern Methods inNumerical Mathematics, 3(1), pp. 53-63 (2012).
19. Nguyen, T.K., Saidizad, A., Jafaryar, M., et al. “Influence of various shapes of CuO nanomaterial on nanofluidforced convection within a sinusoidal channel withobstacles”, Chemical Engineering Research and Design,146, pp. 478–485 (2019). https://doi.org/10.1016/j.cherd.2019.04.030.
20. Elshehabey, H.M., Raizah, Z., Öztop, H.F., et al. “MHDnatural convective flow of Fe3O4− H2O ferrofluids in aninclined partial open complex-wavy-walls ringedenclosures using non-linear Boussinesq approximation”,International Journal of Mechanical Sciences, 170,105352 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105352.
21. Babar, H. and Ali, H. M. “Towards hybrid nanofluids:preparation, thermophysical properties, applications, andchallenges”, Journal of Molecular Liquids, 281, pp. 598–633 (2019). https://doi.org/10.1016/j.molliq.2019.02.102.
22. Sarkar, J., Ghosh, P., and Adil, A. “A review on hybridnanofluids: recent research, development, andapplications” Renewable and Sustainable EnergyReviews, 43, pp. 164–177 (2015). https://doi.org/10.1016/j.rser.2014.11.023.
23. Ismaeel, A.M., Mansour, M.A., Ibrahim, F.S., et al.“Numerical simulation for nanofluid extravasation froma vertical segment of a cylindrical vessel into thesurrounding tissue at the microscale”, AppliedMathematics and Computation, 417, 126758 (2022). https://doi.org/10.1016/j.amc.2021.126758.
24. Ismaeel, A.M., Kamel, R.S., Hedar, M.R., et al.“Numerical simulation for a Casson nanofluid over aninclined vessel surrounded by hot tissue at themicroscale”, SN Applied Sciences, 5(8), p. 223 (2023). https://doi.org/10.1007/s42452-023-05436-2.
25. Hady, F., Ibrahim, F., El-Hawary, H., et al. “Forcedconvection flow of nanofluids past power-law stretchinghorizontal plates”, Applied Mathematics, 3(2), pp. 121-126 (2012). https://doi.org/10.4236/am.2012.32019.
26. Uddin, M.J., Rasel, S.K., Rahman, M.M., et al. “Naturalconvective heat transfer in a nanofluid-filled squarevessel having a wavy upper surface in the presence of amagnetic field”, Thermal Science and EngineeringProgress, 19, 100660 (2020). https://doi.org/10.1016/j.tsep.2020.100660.
27. Cho, C.C. “Effects of a porous medium and wavy surfaceon heat transfer and entropy generation of Cu-waternanofluid natural convection in a square cavitycontaining partially-heated surface”, InternationalCommunications in Heat and Mass Transfer, 119,104925 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104925.
28. Misirlioglu, A., Baytas, A.C., and Pop, I. “Freeconvection in a wavy cavity filled with a porousmedium” International Journal of Heat and MassTransfer, 48(9), pp. 1840–1850 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.005.
29. Sheremet, M.A., Oztop, H.F., and Pop, I. “MHD naturalconvection in an inclined wavy cavity with corner heaterfilled with a nanofluid”, Journal of Magnetism andMagnetic Materials, 416, pp. 37–47 (2016). https://doi.org/10.1016/j.jmmm.2016.04.061.
30. Ahmed, S.E. and Rashed, Z.Z. “MHD natural convectionin a heat-generating porous medium-filled wavyenclosures using Buongiorno’s nanofluid model”, CaseStudies in Thermal Engineering, 14, 100430 (2019). https://doi.org/10.1016/j.csite.2019.100430.
31. Abdulkadhim, A., Hamzah, H.K., Ali, F.H., et al. “Effectof heat generation and heat absorption on naturalconvection of Cu-water nanofluid in a wavy enclosureunder magnetic field”, International Communications inHeat and Mass Transfer, 120, 105024 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.105024.
32. Ahmed, S.E. “Effect of fractional derivatives onnatural convection in a complex‐wavy‐wallsurrounded enclosure filled with porous mediausing nanofluids”, ZAMM‐Journal of AppliedMathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 100(1), e201800323 (2020). https://doi.org/doi.org/10.1002/zamm.201800323.
33. Hussain, S., Öztop, H.F., Mehmood, K., et al. “Effects ofinclined magnetic field on mixed convection in ananofluid filled the double lid-driven cavity withvolumetric heat generation or absorption using finiteelement method”, Chinese Journal of Physics, 56(2), pp.484–501 (2018). https://doi.org/10.1016/j.cjph.2018.02.002.
34. Yusuf, T.A., Mabood, F., Khan, W.A., et al.“Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with non-linear radiation: Darcy-Forchhiemer’smodel”, Alexandria Engineering Journal, 59(6), pp.5247–5261 (2020). https://doi.org/10.1016/j.aej.2020.09.053.
35. Cheong, H.T., Sivasankaran, S., and Bhuvaneswari, M.“Natural convection in a wavy porous cavity withsinusoidal heating and internal heat generation”International Journal of Numerical Methods for Heat &Fluid Flow, 27(2), pp. 287-309 (2017). https://doi.org/10.1108/HFF-07-2015-0272.
36. Ahmed, S.E., Mansour, M.A., Rashad, A.M. , et al.“MHD natural convection from two heating modes infined triangular enclosures filled with porous mediausing nanofluids”, Journal of Thermal Analysis andCalorimetry, 139(5), pp. 3133–3149 (2019). https://doi.org/10.1007/s10973-019-08675-x.