1. Morkhande, V., Pentewar, R., Gapat, S., et al. "A review on hydrogel", Indo American Journal of Pharmaceutical Research, 6(3), pp. 4678-4688 (2016). DOI: 10.1044/1980-iajpr.160216.
2. Morimoto, T. and Ashida, F. "Temperature-responsive bending of a bilayer gel", International Journal of Solids and Structures, 56, pp. 20-28 (2015). https://doi.org/10.1016/j.ijsolstr.2014.12.009.
3. Suzuki, A., Yoshikawa, S., and Bai, G. "Shrinking pattern and phase transition velocity of poly (Nisopropylacrylamide) gel", The Journal of Chemical Physics, 111(1), pp. 360-367 (1999). https://doi.org/10.1063/1.479278.
4. Shojaeifard, M. and Baghani, M. "Finite deformation swelling of a temperature-sensitive hydrogel cylinder under combined extension-torsion", Applied Mathematics and Mechanics, 41(3), pp. 409-424 (2020). https://doi.org/10.1007/s10483-020-2585-6.
5. Ghasemkhani, A. and Mazaheri, H. "Study of functionally graded temperature-sensitive hydrogel micro-valve considering fluid-structure interactions", Modares Mechanical Engineering, 20(4), pp. 943-951 (2020). DOI: 20.1001.1.10275940.1399.20.4.21.8.
6. Marcombe, R., Cai, S., Hong, W., et al. "A theory of constrained swelling of a pH-sensitive hydrogel", Soft Matter, 6(4), pp. 784-793 (2010). https://doi.org/10.1039/B917211D.
7. Arbabi, N., Baghani, M., Abdolahi, J., et al. "Finite bending of bilayer pH-responsive hydrogels: A novel analytic method and finite element analysis", Composites Part B: Engineering, 110, pp. 116-123 (2017). https://doi.org/10.1016/j.compositesb.2016.11.006.
8. Shojaeifard, M., Bayat, M., and Baghani, M. "Swelling-induced finite bending of functionally graded pH-responsive hydrogels: a semi-analytical method", Applied Mathematics and Mechanics, 40(5), pp. 679- 694 (2019). https://doi.org/10.1007/s10483-019-2478- 6.
9. Chester, S.A. and Anand, L. "A coupled theory of fluid permeation and large deformations for elastomeric materials", Journal of the Mechanics and Physics of Solids, 58(11), pp. 1879-1906 (2010). https://doi.org/10.1016/j.jmps.2010.07.020.
10. Toh, W., Ng, T.Y., Hu, J., et al. "Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels", International Journal of Solids and Structures, 51(25-26), pp. 4440-4451 (2014). https://doi.org/10.1016/j.ijsolstr.2014.09.014.
11. Miar, S., Perez, C.A., Ong, J.L., et al. "Polyvinyl alcohol-poly acrylic acid bilayer oral drug delivery systems: A comparison between thin films and inverse double network bilayers", Journal of Biomaterials Applications, 34(4), pp. 523-532 (2019). https://doi.org/10.1177/0885328219861614.
12. Mazaheri, H., Namdar, A.H., and Ghasemkhani, A. "A model for inhomogeneous large deformation of photothermal sensitive hydrogels", Acta Mechanica, 232, pp. 2955-2972 (2021). https://doi.org/10.1007/s00707-021-02991-w.
13. Mazaheri, H., Ghasemkhani, A., and Namdar, A. "Behavior of photo-thermal sensitive polyelectrolyte hydrogel micro-valve: analytical and numerical approaches", Journal of Stress Analysis, 5(1), pp. 21-30 (2020). https://doi.org/10.22084/jrstan.2020.21896.1144.
14. Li, H. "Kinetics of smart hydrogels responding to electric field: A transient deformation analysis", International Journal of Solids and Structures, 46(6), pp. 1326-1333 (2009). https://doi.org/10.1016/j.ijsolstr.2008.11.001.
15. Hu, J., Wei, T., Zhao, H., et al. "Mechanically active adhesive and immune regulative dressings for wound closure", Matter, 4(9), pp. 2985-3000 (2021). https://doi.org/10.1016/j.matt.2021.06.044.
16. Beebe, D.J., Moore, J.S., Bauer, J.M., et al. "Functional hydrogel structures for autonomous flow control inside micro fluidic channels", Nature, 404(6778), pp. 588-590 (2000). https://doi.org/10.1038/35007047.
17. Eddington, D.T. and Beebe, D.J. "Flow control with hydrogels", Advanced Drug Delivery Reviews, 56(2), pp. 199-210 (2004). https://doi.org/10.1016/j.addr.2003.08.013.
18. Ahadian, S., Sadeghian, R.B., Yaginuma, S., et al. "Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour", Biomaterials Science, 3(11), pp. 1449-1458 (2015). https://doi.org/10.1039/C5BM00215J.
19. Xia, C., Lee, H., and Fang, N. "Solvent-driven polymeric micro beam device", Journal of Micromechanics and Microengineering, 20(8), p. 085030 (2010). DOI: 10.1088/0960-1317/20/8/085030.
20. Abdolahi, J., Baghani, M., Arbabi, N., et al. "Analytical and numerical analysis of swelling-induced large bending of thermally-activated hydrogel bilayers", International Journal of Solids and Structures, 99, pp. 1-11 (2016). https://doi.org/10.1016/j.ijsolstr.2016.08.017.
21. Li, W., Guan, Q., Li, M., et al. "Nature-inspired strategies for the synthesis of hydrogel actuators and their applications", Progress in Polymer Science, 140 (2023). https://doi.org/10.1016/j.progpolymsci.2023.101665.
22. Huang, Y.-C., Cheng, Q.-P., Jeng, U.-S., et al. "A biomimetic bilayer hydrogel actuator based on thermoresponsive gelatin methacryloyl-poly (Nisopropylacrylamide) hydrogel with three-dimensionalprintability", ACS Applied Materials and Interfaces, 15(4), pp. 5798-5810 (2023). https://doi.org/10.1021/acsami.2c18961.
23. Hong, W., Liu, Z., and Suo, Z. "Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load", International Journal of Solids and Structures, 46(17), pp. 3282-3289 (2009). https://doi.org/10.1016/j.ijsolstr.2009.04.022.
24. Chester, S.A. and Anand, L. "A thermomechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels", Journal of the Mechanics and Physics of Solids, 59(10), pp. 1978-2006 (2011). https://doi.org/10.1016/j.jmps.2011.07.005.
25. Cai, S. and Suo, Z. "Mechanics and chemical thermodynamics of phase transition in temperaturesensitive hydrogels", Journal of the Mechanics and Physics of Solids, 59(11), pp. 2259-2278 (2011). https://doi.org/10.1016/j.jmps.2011.08.008.
26. Mazaheri, H., Baghani, M., Naghdabadi, R., et al. "Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study", Smart Materials and Structures, 24(4), p. 045004 (2015). DOI: 10.1088/0964- 1726/24/4/045004.
27. Lee, Y.J. and Braun, P.V. "Tunable inverse opal hydrogel pH sensors", Advanced Materials, 15(7-8), pp. 563-566 (2003). https://doi.org/10.1002/adma.200304588.
28. He, T., Li, M., and Zhou, J. "Modeling deformation and contacts of pH sensitive hydrogels for micro fluidic flow control", Soft Matter, 8(11), pp. 3083-3089 (2012). https://doi.org/10.1039/C2SM06749H.
29. Drozdov, A. and Christiansen, J.D. "Time-dependent response of hydrogels under multiaxial deformation accompanied by swelling", Acta Mechanica, 229(12), pp. 5067-5092 (2018).
https://doi.org/10.1007/s00707- 018-2288-y.
30. Lei, J., Li, Z., Xu, S., et al. "A mesoscopic network mechanics method to reproduce the large deformation and fracture process of cross-linked elastomers", Journal of the Mechanics and Physics of Solids, 156, p. 104599 (2021). https://doi.org/10.1016/j.jmps.2021.104599.
31. He, H., Guan, J., and Lee, J.L. "An oral delivery device based on self-folding hydrogels", Journal of Controlled Release, 110(2), pp. 339-346 (2006). https://doi.org/10.1016/j.jconrel.2005.10.017.
32. Zhang, Y., Liu, Z., Swaddiwudhipong, S., et al. "pHsensitive hydrogel for micro- fluidic valve", Journal of Functional Biomaterials, 3(3), pp. 464-479 (2012). https://doi.org/10.3390/jfb3030464.
33. Arbabi, N., Baghani, M., Abdolahi, J., et al. "Study on pH-sensitive hydrogel micro-valves: A fluid-structure interaction approach", Journal of Intelligent Material Systems and Structures, 28(12), pp. 1589-1602 (2017). https://doi.org/10.1177/1045389X16679020.
34. Mazaheri, H., Namdar, A., and Amiri, A. "Behavior of a smart one-way micro-valve considering fluidstructure interaction", Journal of Intelligent Material A. Ghasemkhani et al./Scientia Iranica, Transactions B: Mechanical Engineering 31 (2024) 1343-1358 1357 Systems and Structures, 29(20), pp. 3960-3971 (2018). https://doi.org/10.1177/1045389X18803445.
35. Mazaheri, H., Ghasemkhani, A., and Sabbaghi, S. "Study of fluid-structure interaction in a functionally graded ph-sensitive hydrogel micro-valve", International Journal of Applied Mechanics, 12(5), 2050057 (2020). https://doi.org/10.1142/S175882512050057X.
36. Ghasemkhani, A., Mazaheri, H., and Amiri, A. "Fluidstructure interaction simulations for a temperaturesensitive functionally graded hydrogel-based microchannel", Journal of Intelligent Material Systems and Structures, 32(6), pp. 1045389-20963170 (2020). https://doi.org/10.1177/1045389X20963170.
37. Mazaheri, H. and Khodabandehloo, A. "Behavior of an FG temperature-responsive hydrogel bilayer: Analytical and numerical approaches", Composite Structures, 301, p. 116203 (2022). https://doi.org/10.1016/j.compstruct.2022.116203.
38. Khodabandehloo, A. and Mazaheri, H. "Analytic and finite element studies on deformation of bilayers with a functionally graded pH-responsive hydrogel layer", International Journal of Applied Mechanics, 14(5), p. 2250053 (2022). https://doi.org/10.1142/S1758825122500533.
39. Randall, C.L., Gultepe, E., and Gracias, D.H. "Selffolding devices and materials for biomedical applications", Trends in Biotechnology, 30(3), pp. 138-146 (2012). https://doi.org/10.1016/j.tibtech.2011.06.013.
40. Xiang, S.-L., Su, Y.-X., Yin, H., et al. "Visible-lightdriven isotropic hydrogels as anisotropic underwater actuators", Nano Energy, 85, p. 105965 (2021). https://doi.org/10.1016/j.nanoen.2021.105965.
41. Wu, Z., Bouklas, N., and Huang, R. "Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction", International Journal of Solids and Structures, 50(3-4), pp. 578-587 (2013). https://doi.org/10.1016/j.ijsolstr.2012.10.022.
42. Abdolahi, J., Baghani, M., Arbabi, N., et al. "Finite bending of a temperature-sensitive hydrogel tri-layer: An analytical and finite element analysis", Composite Structures, 164, pp. 219-228 (2017). https://doi.org/10.1016/j.compstruct.2016.12.063.
43. Shojaeifard, M., Rouhani, F., and Baghani, M. "A combined analytical-numerical analysis on multidirectional finite bending of functionally graded temperature-sensitive hydrogels", Journal of Intelligent Material Systems and Structures, 30(13), pp. 1882-1895 (2019). https://doi.org/10.1177/1045389X19849253.
44. Mazaheri, H. and Ghasemkhani, A. "Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell", Journal of Stress Analysis, 3(2), pp. 29-35 (2019). https://doi.org/10.22084/jrstan.2019.18220.1083.
45. Chen, F., Miao, Y., Gu, G., et al. "Soft twisting pneumatic actuators enabled by freeform surface design", IEEE Robotics and Automation Letters, 6(3), pp. 5253-5260 (2021). https://doi.org/10.1109/LRA.2021.3072813.
46. Zou, M., Li, S., Hu, X., et al. "Progresses in tensile, torsional, and multifunctional soft actuators", Advanced Functional Materials, 31(39), pp. 2007437 (2021). https://doi.org/10.1002/adfm.202007437.
47. Wang, M., Lin, B.-P., and Yang, H. "A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes", Nature Communications, 7(1), pp. 1-8 (2016). https://doi.org/10.1038/ncomms13981.
48. Jeong, K.-U., Jang, J.-H., Kim, D.-Y., et al. "Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms", Journal of Materials Chemistry, 21(19), pp. 6824-6830 (2011). https://doi.org/10.1039/C0JM03631E.
49. Bayat, M. and Baghani, M. "Finite element modeling and design of pH/temperature sensitive hydrogel based biphasic twisting actuators", Scientiairanica, 26(4), pp. 2356-2368 (2019). https://doi.org/10.24200/sci.2018.20603.
50. Huang, R., Xue, Y., Li, Z., et al. "Programmable Spiral and Helical Deformation Behaviors of Hydrogel-Based Bi-Material Beam Structures", International Journal of Structural Stability and Dynamics, 20(13), p. 2041010 (2020). https://doi.org/10.1142/S0219455420410102.
51. Hu, J., Jiang, N., and Du, J. "Thermally controlled large deformation in temperature-sensitive hydrogels bilayers", International Journal of Smart and Nano Materials, 12(4), pp. 450-471 (2021). https://doi.org/10.1080/19475411.2021.1958091.
52. Hong, W., Zhao, X., Zhou, J., et al. "A theory of coupled di usion and large deformation in polymeric gels", Journal of the Mechanics and Physics of Solids, 56(5), pp. 1779-1793 (2008). https://doi.org/10.1016/j.jmps.2007.11.010.
53. Afroze, F., Nies, E., and Berghmans, H. "Phase transitions in the system poly (Nisopropylacrylamide)/ water and swelling behaviour of the corresponding networks", Journal of Molecular Structure, 554(1), pp. 55-68 (2000). https://doi.org/10.1016/S0022-2860(00)00559-7.