Numerical study on the behavior of a biphasic temperature-sensitive hydrogel twisting actuator

Document Type : Article

Authors

Department of Mechanical Engineering, Bu-Ali Sina University, Hamedan, Iran

Abstract

This research investigates the twisting behavior of a multi-layered hydrogel-based actuator comprised of two temperature-sensitive hydrogel layers and one elastomeric layer as the main core in different aspects due to temperature changes. Firstly, a suitable model is implemented for the temperature-sensitive hydrogel in the ABAQUS software using the UHYPER subroutine. Then, twisting behavior of the actuator due to temperature changes is simulated, and the twisting angle and reaction torque are obtained for the actuators. A comprehensive parameter study is conducted to investigate the effect of different material and geometric parameters on the performance of the actuator. These parameters include the cross-linking density of the hydrogel, the volumetric percentage of the hydrogel, the geometry of the interface line of the layers, and the aspect ratio (cross-section dimensions) of the actuator. The results identify the actuators with the maximum twisting angle and maximum reaction. In brief, the reaction torque generated at the ends of the twisting actuator is the maximum for the case where the interface line passes through the corners of the actuator cross-section. The results also show that for the maximum twisting angle of the studied actuator, the so-called interface line should not pass through the actuator corners.

Keywords

Main Subjects


References:
1. Morkhande, V., Pentewar, R., Gapat, S., et al. "A review on hydrogel", Indo American Journal of Pharmaceutical Research, 6(3), pp. 4678-4688 (2016). DOI: 10.1044/1980-iajpr.160216.
2. Morimoto, T. and Ashida, F. "Temperature-responsive bending of a bilayer gel", International Journal of Solids and Structures, 56, pp. 20-28 (2015). https://doi.org/10.1016/j.ijsolstr.2014.12.009.
3. Suzuki, A., Yoshikawa, S., and Bai, G. "Shrinking pattern and phase transition velocity of poly (Nisopropylacrylamide) gel", The Journal of Chemical Physics, 111(1), pp. 360-367 (1999). https://doi.org/10.1063/1.479278.
4. Shojaeifard, M. and Baghani, M. "Finite deformation swelling of a temperature-sensitive hydrogel cylinder under combined extension-torsion", Applied Mathematics and Mechanics, 41(3), pp. 409-424 (2020). https://doi.org/10.1007/s10483-020-2585-6.
5. Ghasemkhani, A. and Mazaheri, H. "Study of functionally graded temperature-sensitive hydrogel micro-valve considering  fluid-structure interactions", Modares Mechanical Engineering, 20(4), pp. 943-951 (2020). DOI: 20.1001.1.10275940.1399.20.4.21.8.
6. Marcombe, R., Cai, S., Hong, W., et al. "A theory of constrained swelling of a pH-sensitive hydrogel", Soft Matter, 6(4), pp. 784-793 (2010). https://doi.org/10.1039/B917211D.
7. Arbabi, N., Baghani, M., Abdolahi, J., et al. "Finite bending of bilayer pH-responsive hydrogels: A novel analytic method and finite element analysis", Composites Part B: Engineering, 110, pp. 116-123 (2017). https://doi.org/10.1016/j.compositesb.2016.11.006.
8. Shojaeifard, M., Bayat, M., and Baghani, M. "Swelling-induced finite bending of functionally graded pH-responsive hydrogels: a semi-analytical method", Applied Mathematics and Mechanics, 40(5), pp. 679- 694 (2019). https://doi.org/10.1007/s10483-019-2478- 6.
9. Chester, S.A. and Anand, L. "A coupled theory of  fluid permeation and large deformations for elastomeric materials", Journal of the Mechanics and Physics of Solids, 58(11), pp. 1879-1906 (2010). https://doi.org/10.1016/j.jmps.2010.07.020.
10. Toh, W., Ng, T.Y., Hu, J., et al. "Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels", International Journal of Solids and Structures, 51(25-26), pp. 4440-4451 (2014). https://doi.org/10.1016/j.ijsolstr.2014.09.014.
11. Miar, S., Perez, C.A., Ong, J.L., et al. "Polyvinyl alcohol-poly acrylic acid bilayer oral drug delivery systems: A comparison between thin films and inverse double network bilayers", Journal of Biomaterials Applications, 34(4), pp. 523-532 (2019). https://doi.org/10.1177/0885328219861614.
12. Mazaheri, H., Namdar, A.H., and Ghasemkhani, A. "A model for inhomogeneous large deformation of photothermal sensitive hydrogels", Acta Mechanica, 232, pp. 2955-2972 (2021). https://doi.org/10.1007/s00707-021-02991-w.
13. Mazaheri, H., Ghasemkhani, A., and Namdar, A. "Behavior of photo-thermal sensitive polyelectrolyte hydrogel micro-valve: analytical and numerical approaches", Journal of Stress Analysis, 5(1), pp. 21-30 (2020). https://doi.org/10.22084/jrstan.2020.21896.1144.
14. Li, H. "Kinetics of smart hydrogels responding to electric field: A transient deformation analysis", International Journal of Solids and Structures, 46(6), pp. 1326-1333 (2009). https://doi.org/10.1016/j.ijsolstr.2008.11.001.
15. Hu, J., Wei, T., Zhao, H., et al. "Mechanically active adhesive and immune regulative dressings for wound closure", Matter, 4(9), pp. 2985-3000 (2021). https://doi.org/10.1016/j.matt.2021.06.044.
16. Beebe, D.J., Moore, J.S., Bauer, J.M., et al. "Functional hydrogel structures for autonomous  flow control inside micro fluidic channels", Nature, 404(6778), pp. 588-590 (2000). https://doi.org/10.1038/35007047.
17. Eddington, D.T. and Beebe, D.J. "Flow control with hydrogels", Advanced Drug Delivery Reviews, 56(2), pp. 199-210 (2004). https://doi.org/10.1016/j.addr.2003.08.013.
18. Ahadian, S., Sadeghian, R.B., Yaginuma, S., et al. "Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour", Biomaterials Science, 3(11), pp. 1449-1458 (2015). https://doi.org/10.1039/C5BM00215J.
19. Xia, C., Lee, H., and Fang, N. "Solvent-driven polymeric micro beam device", Journal of Micromechanics and Microengineering, 20(8), p. 085030 (2010). DOI: 10.1088/0960-1317/20/8/085030.
20. Abdolahi, J., Baghani, M., Arbabi, N., et al. "Analytical and numerical analysis of swelling-induced large bending of thermally-activated hydrogel bilayers", International Journal of Solids and Structures, 99, pp. 1-11 (2016). https://doi.org/10.1016/j.ijsolstr.2016.08.017.
21. Li, W., Guan, Q., Li, M., et al. "Nature-inspired strategies for the synthesis of hydrogel actuators and their applications", Progress in Polymer Science, 140 (2023). https://doi.org/10.1016/j.progpolymsci.2023.101665.
22. Huang, Y.-C., Cheng, Q.-P., Jeng, U.-S., et al. "A biomimetic bilayer hydrogel actuator based on thermoresponsive gelatin methacryloyl-poly (Nisopropylacrylamide) hydrogel with three-dimensionalprintability", ACS Applied Materials and Interfaces, 15(4), pp. 5798-5810 (2023). https://doi.org/10.1021/acsami.2c18961.
23. Hong, W., Liu, Z., and Suo, Z. "Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load", International Journal of Solids and Structures, 46(17), pp. 3282-3289 (2009). https://doi.org/10.1016/j.ijsolstr.2009.04.022.
24. Chester, S.A. and Anand, L. "A thermomechanically coupled theory for  fluid permeation in elastomeric materials: application to thermally responsive gels", Journal of the Mechanics and Physics of Solids, 59(10), pp. 1978-2006 (2011). https://doi.org/10.1016/j.jmps.2011.07.005.
25. Cai, S. and Suo, Z. "Mechanics and chemical thermodynamics of phase transition in temperaturesensitive hydrogels", Journal of the Mechanics and Physics of Solids, 59(11), pp. 2259-2278 (2011). https://doi.org/10.1016/j.jmps.2011.08.008.
26. Mazaheri, H., Baghani, M., Naghdabadi, R., et al. "Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study", Smart Materials and Structures, 24(4), p. 045004 (2015). DOI: 10.1088/0964- 1726/24/4/045004.
27. Lee, Y.J. and Braun, P.V. "Tunable inverse opal hydrogel pH sensors", Advanced Materials, 15(7-8), pp. 563-566 (2003). https://doi.org/10.1002/adma.200304588.
28. He, T., Li, M., and Zhou, J. "Modeling deformation and contacts of pH sensitive hydrogels for micro fluidic flow control", Soft Matter, 8(11), pp. 3083-3089 (2012). https://doi.org/10.1039/C2SM06749H.
29. Drozdov, A. and Christiansen, J.D. "Time-dependent response of hydrogels under multiaxial deformation accompanied by swelling", Acta Mechanica, 229(12), pp. 5067-5092 (2018). https://doi.org/10.1007/s00707- 018-2288-y.
30. Lei, J., Li, Z., Xu, S., et al. "A mesoscopic network mechanics method to reproduce the large deformation and fracture process of cross-linked elastomers", Journal of the Mechanics and Physics of Solids, 156, p. 104599 (2021). https://doi.org/10.1016/j.jmps.2021.104599.
31. He, H., Guan, J., and Lee, J.L. "An oral delivery device based on self-folding hydrogels", Journal of Controlled Release, 110(2), pp. 339-346 (2006). https://doi.org/10.1016/j.jconrel.2005.10.017.
32. Zhang, Y., Liu, Z., Swaddiwudhipong, S., et al. "pHsensitive hydrogel for micro- fluidic valve", Journal of Functional Biomaterials, 3(3), pp. 464-479 (2012). https://doi.org/10.3390/jfb3030464.
33. Arbabi, N., Baghani, M., Abdolahi, J., et al. "Study on pH-sensitive hydrogel micro-valves: A  fluid-structure interaction approach", Journal of Intelligent Material Systems and Structures, 28(12), pp. 1589-1602 (2017). https://doi.org/10.1177/1045389X16679020.
34. Mazaheri, H., Namdar, A., and Amiri, A. "Behavior of a smart one-way micro-valve considering  fluidstructure interaction", Journal of Intelligent Material A. Ghasemkhani et al./Scientia Iranica, Transactions B: Mechanical Engineering 31 (2024) 1343-1358 1357 Systems and Structures, 29(20), pp. 3960-3971 (2018). https://doi.org/10.1177/1045389X18803445.
35. Mazaheri, H., Ghasemkhani, A., and Sabbaghi, S. "Study of  fluid-structure interaction in a functionally graded ph-sensitive hydrogel micro-valve", International Journal of Applied Mechanics, 12(5), 2050057 (2020). https://doi.org/10.1142/S175882512050057X.
36. Ghasemkhani, A., Mazaheri, H., and Amiri, A. "Fluidstructure interaction simulations for a temperaturesensitive functionally graded hydrogel-based microchannel", Journal of Intelligent Material Systems and Structures, 32(6), pp. 1045389-20963170 (2020). https://doi.org/10.1177/1045389X20963170.
37. Mazaheri, H. and Khodabandehloo, A. "Behavior of an FG temperature-responsive hydrogel bilayer: Analytical and numerical approaches", Composite Structures, 301, p. 116203 (2022). https://doi.org/10.1016/j.compstruct.2022.116203.
38. Khodabandehloo, A. and Mazaheri, H. "Analytic and finite element studies on deformation of bilayers with a functionally graded pH-responsive hydrogel layer", International Journal of Applied Mechanics, 14(5), p. 2250053 (2022). https://doi.org/10.1142/S1758825122500533.
39. Randall, C.L., Gultepe, E., and Gracias, D.H. "Selffolding devices and materials for biomedical applications", Trends in Biotechnology, 30(3), pp. 138-146 (2012). https://doi.org/10.1016/j.tibtech.2011.06.013.
40. Xiang, S.-L., Su, Y.-X., Yin, H., et al. "Visible-lightdriven isotropic hydrogels as anisotropic underwater actuators", Nano Energy, 85, p. 105965 (2021). https://doi.org/10.1016/j.nanoen.2021.105965.
41. Wu, Z., Bouklas, N., and Huang, R. "Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction", International Journal of Solids and Structures, 50(3-4), pp. 578-587 (2013). https://doi.org/10.1016/j.ijsolstr.2012.10.022.
42. Abdolahi, J., Baghani, M., Arbabi, N., et al. "Finite bending of a temperature-sensitive hydrogel tri-layer: An analytical and finite element analysis", Composite Structures, 164, pp. 219-228 (2017). https://doi.org/10.1016/j.compstruct.2016.12.063.
43. Shojaeifard, M., Rouhani, F., and Baghani, M. "A combined analytical-numerical analysis on multidirectional finite bending of functionally graded temperature-sensitive hydrogels", Journal of Intelligent Material Systems and Structures, 30(13), pp. 1882-1895 (2019). https://doi.org/10.1177/1045389X19849253.
44. Mazaheri, H. and Ghasemkhani, A. "Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell", Journal of Stress Analysis, 3(2), pp. 29-35 (2019). https://doi.org/10.22084/jrstan.2019.18220.1083.
45. Chen, F., Miao, Y., Gu, G., et al. "Soft twisting pneumatic actuators enabled by freeform surface design", IEEE Robotics and Automation Letters, 6(3), pp. 5253-5260 (2021). https://doi.org/10.1109/LRA.2021.3072813.
46. Zou, M., Li, S., Hu, X., et al. "Progresses in tensile, torsional, and multifunctional soft actuators", Advanced Functional Materials, 31(39), pp. 2007437 (2021). https://doi.org/10.1002/adfm.202007437.
47. Wang, M., Lin, B.-P., and Yang, H. "A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes", Nature Communications, 7(1), pp. 1-8 (2016). https://doi.org/10.1038/ncomms13981.
48. Jeong, K.-U., Jang, J.-H., Kim, D.-Y., et al. "Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms", Journal of Materials Chemistry, 21(19), pp. 6824-6830 (2011). https://doi.org/10.1039/C0JM03631E.
49. Bayat, M. and Baghani, M. "Finite element modeling and design of pH/temperature sensitive hydrogel based biphasic twisting actuators", Scientiairanica, 26(4), pp. 2356-2368 (2019). https://doi.org/10.24200/sci.2018.20603.
50. Huang, R., Xue, Y., Li, Z., et al. "Programmable Spiral and Helical Deformation Behaviors of Hydrogel-Based Bi-Material Beam Structures", International Journal of Structural Stability and Dynamics, 20(13), p. 2041010 (2020). https://doi.org/10.1142/S0219455420410102.
51. Hu, J., Jiang, N., and Du, J. "Thermally controlled large deformation in temperature-sensitive hydrogels bilayers", International Journal of Smart and Nano Materials, 12(4), pp. 450-471 (2021). https://doi.org/10.1080/19475411.2021.1958091.
52. Hong, W., Zhao, X., Zhou, J., et al. "A theory of coupled di usion and large deformation in polymeric gels", Journal of the Mechanics and Physics of Solids, 56(5), pp. 1779-1793 (2008). https://doi.org/10.1016/j.jmps.2007.11.010.
53. Afroze, F., Nies, E., and Berghmans, H. "Phase transitions in the system poly (Nisopropylacrylamide)/ water and swelling behaviour of the corresponding networks", Journal of Molecular Structure, 554(1), pp. 55-68 (2000). https://doi.org/10.1016/S0022-2860(00)00559-7.