Effects of different designs of pressure vessels on efficiency and energy consumption of reverse osmosis systems

Document Type : Article

Authors

Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract

One of the cost-effective methods of water purification is reverse osmosis. In the present work, the effect of pressure vessels with different numbers of membranes in two types of reverse osmosis system design is investigated. Simulation results showed that pressure vessels with more membranes have lower energy consumption and higher efficiency in different simple and hybrid designs of reverse osmosis systems. Findings showed that the first design performs better in terms of energy consumption and efficiency than the second design. The study also showed that maximum efficiency was achieved using the first design of the hybrid two-stage brackish water reverse osmosis system. The least efficient system was the hybrid single-stage seawater reverse osmosis system.

Keywords

Main Subjects


References:
1. Guo, Y., Liu, C., Liu, H., et al. "Contemporary antibiofouling modifications of reverse osmosis membranes: State-of-the-art insights on mechanisms and strategies", Chemical Engineering Journal, 429, 132400 (2022). DOI: 10.1016/j.cej.2021.132400.
2. Tawalbeh, M., Qalyoubi, L., Al-Othman, A., et al. "Insights on the development of enhanced antifouling reverse osmosis membranes: Industrial applications and challenges", Desalination, 553, 116460 (2023). DOI: https://doi.org/10.1016/j.desal.2023.116460.
3. Khosravikia, M. "Quantitative model for predicting the electroosmotic  flow in dual-pole nanochannels", Electrophoresis, 44(7-8), pp. 733-743 (2023). DOI: 10.1002/elps.202300006.
4. Zhang, K., Wu, H.-H., Huo, H.-Q., et al. "Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field", Chinese Journal of Chemical Engineering, 49, pp. 76- 99 (2022). DOI: https://doi.org/10.1016/j.cjche.2022.06.017.
5. Luo, Y., Liu, Y., Shen, J., et al. "Application of bipolar membrane electrodialysis in environmental protection and resource recovery: A review", Membranes, 12(9), p. 829 (2022). DOI: 10.3390/membranes12090829.
6. Khosravikia, M. and Rahbar-Kelishami, A. "A simulation study of an applied approach to enhance drug recovery through electromembrane extraction", Journal of Molecular Liquids, 358, p. 119210 (2022). DOI: https://doi.org/10.1016/j.molliq.2022.119210.
7. Viet, N.D., Jang, D., Yoon, Y., et al. "Enhancement of membrane system performance using artificial intelligence technologies for sustainable water and wastewater treatment: A critical review", Critical Reviews in Environmental Science and Technology, 52(20), pp. 3689-3719 (2022). DOI: https://doi.org/10.1080/10643389.2021.1940031.
8. Saabas, D. and Lee, J. "Recovery of ammonia from simulated membrane contactor effluent using bipolar membrane electrodialysis", Journal of Membrane Science, 644, p. 120081 (2022). DOI: https://doi.org/10.1016/j.memsci.2021.120081.
9. Nadeem, K., Alliet, M., Plana, Q., et al. "Modeling, simulation and control of biological and chemical Premoval processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art", Science of the Total Environment, 809, p. 151109 (2022). DOI: 10.1016/j.scitotenv.2021.151109.
10. McGinnis, R.L. and Elimelech, M. "Global challenges in energy and water supply: the promise of engineered osmosis", Environ Sci Technol, 42(23), pp. 8625-8629 (2008). DOI: 10.1021/es800812m.
11. Altaee, A. "Computational model for estimating reverse osmosis system design and performance: Partone binary feed solution", Desalination, 291, pp. 101- 105 (2012). DOI: https://doi.org/10.1016/j.desal.2012.01.028.
12. Koutsou, C., Kritikos, E., Karabelas, A., et al. "Analysis of temperature effects on the specific energy consumption in reverse osmosis desalination processes", Desalination, 476, p. 114213 (2020).DOI: https://doi.org/10.1016/j.desal.2019.114213.
13. Zaidi, S.J., Fadhillah, F., Khan, Z., et al. "Salt and water transport in reverse osmosis thin film composite seawater desalination membranes", Desalination, 368, pp. 202-213 (2015). DOI: https://doi.org/10.1016/j.desal.2015.02.026.
14. Chen, J. and Li, G. "Marine reverse osmosis desalination plant-a case study", Desalination, 174(3), pp. 299-303 (2005). DOI: https://doi.org/10.1016/j.desal.2004.10.004.
15. Sayyaadi, H. and Saffari, A. "Thermoeconomic optimization of multi effect distillation desalination systems", Applied Energy, 87(4), pp. 1122-1133 (2010). DOI: https://doi.org/10.1016/j.apenergy.2009.05.023.
16. Lee, K.P., Arnot, T.C., and Mattia, D. "A review of reverse osmosis membrane materials for desalinationdevelopment to date and future potential", Journal of Membrane Science, 370(1-2), pp. 1-22 (2011). DOI: https://doi.org/10.1016/j.memsci.2010.12.036.
17. Schiffler, M. "Perspectives and challenges for desalination in the 21st century", Desalination, 165, pp. 1-9 (2004). DOI: https://doi.org/10.1016/j.desal.2004.06.001.
18. Ludwig, H. "Energy consumption of reverse osmosis seawater desalination-possibilities for its optimisation in design and operation of SWRO plants", Desalination and Water Treatment, 13(1-3), pp. 13-25 (2010). DOI: https://doi.org/10.5004/dwt.2010.982.
19. Park, K., Kim, J., Ryook, Y.D., et al. "Towards a lowenergy seawater reverse osmosis desalination plant: A review and theoretical analysis for future directions", Journal of Membrane Science, 595, 117607 (2020). DOI: https://doi.org/10.1016/j.memsci.2019.117607.
20. Alabduljalil, S., Alotaibi, S., and Abdulrahim, H. "Techno-economic evaluation of different seawater reverse osmosis configurations for efficient boron removal", Desalination and Water Treatment, 168, pp. 65-76 (2019).
21. Altaee, A., Zaragoza, G., and van Tonningen, H.R. "Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination", Desalination, 336, pp. 50-57 (2014). DOI: https://doi.org/10.1016/j.memsci.2019.117607.
22. Mustaqimah, M., Alghoul, M., Poovanaesvaran, P., et al. "Comparison of one stage and two stage-brackish water reverse osmosis system: A simulation study", Computational Methods in Science and Engineering (2013).
23. Joseph, A. and Damodaran, V. "Dynamic simulation of the reverse osmosis process for seawater using LabVIEW and an analysis of the process performance", Computers & Chemical Engineering, 121, pp. 294-305 (2019). DOI: https://doi.org/10.1016/j.compchemeng.2018.11.001.
24. Al-Obaidi, M.A., Alsarayreh, A.A., Al-Hroub, A.M., et al. "Performance analysis of a medium-sized industrial reverse osmosis brackish water desalination plant", Desalination, 443, pp. 272-284 (2018). DOI: https://doi.org/10.1016/j.desal.2018.06.010.
25. Pearson, J.L., Michael, P.R., Ghaffour, N., et al. "Economics and energy consumption of brackish water reverse osmosis desalination: Innovations and impacts of feedwater quality", Membranes (Basel), 11(8), p. 616 (2021). DOI: https://doi.org/10.3390/membranes11080616.
26. Oh, H.-J., Hwang, T.-M., and Lee, S. "A simplified simulation model of RO systems for seawater desalination", Desalination, 238(1-3), pp. 128-139 (2009). DOI: https://doi.org/10.1016/j.desal.2008.01.043.
27. Kim, J., Park, K., Yang, D.R., et al. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants", Applied Energy, 254, p. 113652 (2019). DOI: https://doi.org/10.1016/j.apenergy.2019.113652.
28. Wilf, M. and Klinko, K. "Optimization of seawater RO systems design", Desalination, 138(1-3), pp. 299-306 (2001). DOI: https://doi.org/10.1016/S0011-9164(01)00278-8.
29. Kim, Y.M., Kim, S.J., Kim, Y.S., et al. "Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network", Desalination, 238(1-3), pp. 312-332 (2009). DOI: https://doi.org/10.1016/j.desal.2008.10.004.
30. Kamal, A., El-Sayed, T., El-Butch, A., et al. "Analytical and finite element modeling of pressure vessels for seawater reverse osmosis desalination plants", Desalination, 397, pp. 126-139 (2016). DOI: https://doi.org/10.1016/j.desal.2016.06.015.
31. Solutions, D.W. "FilmtecTM reverse osmosis membranes", Technical Manual, Form, 399(609-00071), pp. 1-180 (2010). 
32. Altaee, A. "Theoretical study on feed water designs to reverse osmosis pressure vessel", Desalination, 326, pp. 1-9 (2013). DOI: https://doi.org/10.1016/j.desal.2013.07.009
33. Chattopadhyay, S., Pressure Vessels: Design and Practice, CRC Press (2004). 
34. Fritzmann, C., Lowenberg, J., Wintgens, T., et al. "State-of-the-art of reverse osmosis desalination", Desalination, 216(1-3), pp. 1-76 (2007). DOI: https://doi.org/10.1016/j.desal.2006.12.009.
35. Hamed, O.A. "Overview of hybrid desalination systems-current status and future prospects", Desalination, 186(1-3), pp. 207-214 (2005). DOI: https://doi.org/10.1016/j.desal.2005.03.095.
36. Gullinkala, T., Digman, B., Gorey, C., et al. "Desalination: reverse osmosis and membrane distillation", Sustainability Science and Engineering, 2, pp. 65-93 (2010). DOI: https://doi.org/10.1016/S1871-2711(09)00204-9.
37. Hoek, E.M., Allred, J., Knoell, T., et al. "Modeling the effects of fouling on full-scale reverse osmosis processes", Journal of Membrane Science, 314(1-2), pp. 33-49 (2008). DOI: https://doi.org/10.1016/j.memsci.2008.01.025.
38. Yaghoubi, S., Babapoor, A., Mousavi, S.M., et al. "Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution", Water, 14(22), 3616 (2022).DOI: https://doi.org/10.3390/w14223616.
39. Kim, J. and Hong, S. "A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination", Desalination, 429, pp. 142-154 (2018).DOI: https://doi.org/10.1016/j.desal.2017.12.026.
40. Lenntech. "Reverse Osmosis Demineralization", https://www.lenntech.com (accessed 2022).
41. Jeong, K., Park, M., Ki, S.J., et al. "A systematic optimization of Internally Staged Design (ISD) for a fullscale reverse osmosis process", Journal of Membrane Science, 540, pp. 285-296 (2017). DOI: https://doi.org/10.1016/j.memsci.2017.06.066.
42. Kim, J. and Hong, S. "Optimizing seawater reverse osmosis with internally staged design to improve product water quality and energy efficiency", Journal of Membrane Science, 568, pp. 76-86 (2018).DOI: https://doi.org/10.1016/j.memsci.2018.09.046.
43. Du, Y., Gu, H., Sun, X., et al. "Simultaneous optimization of size and operation for seawater reverse osmosis network with permeate split and interstage permeate split designs", Industrial  & Engineering Chemistry Research, 60(10), pp. 4041-4059 (2021). DOI: 10.1021/acs.iecr.0c06163.
44. Ghourejili, S., Yaghoubi, S., Valizadeh Harzand, F., et al. "Effects of total dissolved solids on pressure drop and net driving pressure in different designs of brackish and seawater reverse osmosis systems", Arabian Journal for Science and Engineering, 48(7), pp. 8785-8799 (2022). DOI: 10.1007/s13369-022-07393-1.
45. Ghourejili, S., Valizadeh Harzand, F., Yaghoubi, S., et al. "Investigation of the effects of temperature on net driving pressure and pressure drop in different configurations of the reverse osmosis system using computer simulations", Arabian Journal for Science and Engineering, pp. 1-11 (2023).
46. Al-Hotmani, O., Al-Obaidi, M., Patel, R., et al. "Performance analysis of a hybrid system of multi effect distillation and permeate reprocessing reverse osmosis processes for seawater desalination", Desalination, 470, 114066 (2019). DOI: https://doi.org/10.1016/j.desal.2019.07.006.
Volume 31, Issue 9
Transactions on Chemistry and Chemical Engineering (C)
May and June 2024
Pages 718-726
  • Receive Date: 03 July 2022
  • Revise Date: 03 July 2023
  • Accept Date: 13 November 2023