Modeling of jet electrochemical machining using numerical and design of experiments methods

Document Type : Article

Authors

Department of Mechanical Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran

Abstract

Modeling and determining the optimal conditions for the Jet Electrochemical Machining (Jet-ECM) process is critical. In this study, a hybrid approach combining numerical and Design of Experiments (DOE) methods have been applied to model and determine the optimal conditions for Jet-ECM. The voltage (V), inner tool diameter (I), initial machining gap (G), and electrolyte conductivity (C) are considered input variables. Additionally, dimensional accuracy (E) and machining depth (D) are response variables. Twenty-seven numerical simulations have been performed using the Box–Behnken
design to implement the Response Surface Methodology (RSM). Consequently, two mathematical models have been obtained for these response variables. The effects of the input variables on the response variables are investigated using statistical techniques such as variance analysis. Furthermore, the desirability function approach has been applied to determine the optimal conditions for dimensional accuracy and depth of machining. The results show that the optimal values for achieving maximum depth of machining while maintaining a dimensional accuracy of 0.05 mm are as follows:
electrolyte conductivity of 8 S/m, voltage of 36.9 V, initial machining gap of 200 μm, and inner tool diameter of 0.4 mm.

Keywords

Main Subjects


References:
1. Rumyantsev, E. and Davydov, A. “Electrochemical machining of metals”, MIR Publishers, Moscow (1989). 
2. Mehrvar, A., Basti, A., and Jamali, A. “Inverse modelling of electrochemical machining process using a novel combination of soft computing methods”, P. I. Mech. Eng. C-J Mec., 234, pp. 3436-3446 (2020). DOI: 10.1177/0954406220916495.
3. Bergs, T. and Harst, S. “Development of a process signature for electrochemical machining”, CIRP. Ann- Manuf. Techn., 69, pp. 153-156 (2020). DOI: 10.1016/j.cirp.2020.04.078.
4. Leese, A. and Ivanov, A. “Electrochemical micromachining: Review of factors affecting the process applicability in micro-manufacturing”, P. I. Mech. Eng. B-J Manuf., 232(2), pp. 195-207 (2017). DOI: 10.1177/0954405416640172.
5. Kendall, T., Diver, C., Gillen, D., et al. “New insights on manipulating the material removal characteristics of jetelectrochemical machining through nozzle design”, Int. J. Adv. Manuf. Technol., 118, pp. 1009-1026 (2022). DOI: 10.1007/s00170-021-07777-x.
6. Hackert-Oschätzchen, M., Paul, R., Martin, A., et al. “Study on the dynamic generation of the jet shape in jet electrochemical machining” J. Mater. Process. Tech., 223, pp. 240-251 (2015). DOI: 10.1016/j.jmatprotec.2015.03.049.
7. Kendall, T., Bartolo, P., Gillen, D., et al. “A review of physical experimental research in jet electrochemical machining”, Int. J. Adv. Manuf. Technol., 105, pp. 651- 667 (2019). DOI: 10.1007/s00170-019-04099-x.
8. Niu, S., Qu, N., Fu, S., et al. “Investigation of inner-jet electrochemical milling of nickel-based alloy GH4169/Inconel 718”, Int. J. Adv. Manuf. Technol., 93, pp. 2123–2132 (2017). DOI: 10.1007/s00170-017-0680-8.
9. Wienand, T., Meichsner, G., and Hackert-Oschätzchen, M. “Jet electrochemical machining simulation of intersecting line removals with adjustable nozzle diameter by a finite area element grid”, Procedia CIRP., 102, pp. 349-354 (2021). DOI: 10.1016/j.procir.2021.09.060.
10. Ippolito, R., Tornincasa, S.G., Capello, C.R.F., et al. “Electron-jet drilling - Basic Involved Phenomena”, CIRP Annals., 30(1), pp. 87-90 (1981). DOI: 10.1016/S0007-8506(07)60901-9.
11. Speidel, A., Bisterov, I., Kumar Saxen, K., et al. “Electrochemical jet manufacturing technology: From fundamentals to application”, Int J Mach Tool Manu., 180, pp. 103931 (2022). DOI: 10.1016/j.ijmachtools.2022.103931.
12. Mehrvar, A., Basti, A., and Jamali, A. “Optimization of electrochemical machining process parameters: Combining response surface methodology and differential evolution algorithm”, P. I. Mech. Eng. E-J. Pro., 231, pp. 1114-1126 (2017). DOI: 10.1177/0954408916656387.
13. Venkata Rao, R. and Kalyankar V.D. “Optimization of modern machining processes using advanced optimization techniques: a review”, Int J Adv Manuf Technol., 73, pp. 1159-1188 (2014). DOI: 10.1007/s00170-014-5894-4.
14. Mukherjee, R. and Chakraborty, S. “Selection of the optimal electrochemical machining process parameters using biogeography-based optimization algorithm”, Int J Adv Manuf Technol., 64, pp. 781-791 (2013). DOI: 10.1007/s00170-012-4060-0.
15. Mehrvar, A., Motamedi, M., and Mirak, A. “Modeling of electrochemical machining of nickel-based single crystal super alloy by combining numerical and design of experiments methods”, Journal of Solid and Fluid Mechanics., 10(3), pp. 207-217 (2020). DOI: 10.22044/JSFM.2020.9576.3162.
16. Guo, C., Qian, J., and Reynaerts, D. “A threedimensional FEM model of channel machining by scanning micro electrochemical flow cell and jet electrochemical machining”, Precis Eng., 52, pp. 507- 519 (2018). DOI: 10.1016/j.precisioneng.2018.02.002.
17. Hackert-Oschätzchen, M., Paul, R., Kowalick, M., et al. “Multiphysics simulation of the material removal in Jet Electrochemical Machining”, Procedia CIRP., 31, pp. 197-202 (2015). DOI: 10.1016/j.procir.2015.03.098.
18. Paul, R., Hackert-Oschätzchen, M., Danilov, I., et al. “3D multiphysics simulation of jet electrochemical machining of intersecting line removals”, Procedia CIRP., 82, pp. 196-201 (2019). DOI: 10.1016/j.procir.2019.04.154.
19. Mitchell-Smith, J. and Clare, A.T. “Electrochemical jet machining of titanium: Overcoming passivation layers with ultrasonic assistance”, Procedia CIRP., 42, pp. 379-383 (2016). DOI: 10.1016/j.procir.2016.02.215.
20. Speidel, A., Sélo, R., Bisterov, I., et al. “Post processing of additively manufactured parts using electrochemical jet machining”, Mater Lett., 292, pp. 129671 (2021). DOI: 10.1016/j.matlet.2021.129671.
21. Liu, W., Kunieda, M., and Luo, Z. “Three-dimensional simulation and experimental investigation of electrolyte jet machining with the inclined nozzle”, J. Mater. Process. Tech., 297, 117244 (2021). DOI: 10.1016/j.jmatprotec.2021.117244.
22. Luo, J., Fang, X., and Zhu, D. “Jet electrochemical machining of multi-grooves by using tube electrodes in a row”, J. Mater. Process. Tech., 283, 116705 (2020). DOI: 10.1016/j.jmatprotec.2020.116705.
23. Hackert-Oschätzchen, M., Paul, R., Martin, A., et al. “Study on the dynamic generation of the jet shape in jetelectrochemical machining”, J. Mater. Process. Tech., 223, pp. 240–251 (2015). DOI: 10.1016/j.jmatprotec.2015.03.049.
24. Chen, X., Zhu, J., Xu, Z., et al. “Modeling and experimental research on the evolution process of micro through-slit array generated with masked jet electrochemical machining”, J. Mater. Process. Tech., 298, 117304 (2021). DOI: 10.1016/j.jmatprotec.2021.117304.
25. Hackert-Oschätzchen, M., Martin, A., Meichsner, G., et al. “Microstructuring of carbide metals applying jet electrochemical machining”, Precis Eng., 37(3), pp. 621– 634 (2013). DOI: 10.1016/j.precisioneng.2013.01.007.
26. Hung, J.C., Liu, J.H., and Fan, Z.W. “Fabrication of microscale concave and grooves through mixed-gas electrochemical jet machining”, Precis Eng., 55, pp. 310– 321 (2019). DOI: 10.1016/j.precisioneng.2018.09.020.
27. Chen, X.L., Dong, B.Y., Zhang, C.Y., et al. “Jet electrochemical machining of micro dimples with conductive mask”, J. Mater. Process. Tech., 257, pp. 101– 111 (2018). DOI: 10.1016/j.jmatprotec.2018.02.035.
28. Zhang, X., Song, X., Ming, P., et al. “The effect of electrolytic jet orientation on machining characteristics in jet electrochemical machining”, Micromachines., 10(6), 404 (2019). DOI: 10.3390/mi10060404.
29. Myers, R.H. and Montgomery, D.C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley, New York (1995).
30. Sun, C., Zhu, D., Li, Z., et al. “Application of FEM to tool design for electrochemical machining freeform surface”, Finite Elem Anal Des., 43(2), pp. 168–172 (2006). DOI: 10.1016/j.finel.2006.08.004.
31. Mehrvar, A., Mirak, A., and Rezaei, M. “Numerical and experimental investigation of electrochemical machining of nickel-based single crystal superalloy”, Modares Mech Eng., 20, pp. 1873–1881 (2020). 
32. Assarzadeh, S. and Ghoreishi, M. “A dual response surface-desirability approach to process modelling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters”, Int J Adv Manuf Technol., 64, pp. 1459–1477 (2013). DOI: 10.1007/s00170-012-4115-2.
33. Mehrvar, A., Basti, A., and Jamali, A. “Modeling and parameter optimization in electrochemical machining process application of dual response surface desirability approach”, Lat Am Appl Res., 47(4), pp. 157–162 (2017). DOI: 10.52292/j.laar.2017.317.
Volume 31, Issue 20
Transactions on Mechanical Engineering (B)
November and December 2024
Pages 1880-1888
  • Receive Date: 27 March 2022
  • Revise Date: 20 July 2023
  • Accept Date: 15 October 2023