Computation insight of modified thermal distribution of hybrid nanofluids in complex wavy channel: A comparative thermal approach for different nanofluid models

Document Type : Article

Authors

1 Department of Mathematics, Mirpur university of Science and Technology, Mirpur, Pakistan

2 Department of Mathematics, University of Azad Jammu and Kashmir Muzaffarabad, Pakistan

3 Department of Mathematics, Namal University, Mianwali 42250, Pakistan

4 Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia

5 Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il City 81451, Saudi Arabia

Abstract

Owing to enhanced thermal mechanism of nanomaterials, the researchers are continuously exploring the novel features of nanofluids and claiming multidisciplinary applications in solar systems, engineering processes, energy devices and automobile industries. The experimentally supported research proves that with interaction of different types of nanoparticles is more effective to enhance the thermal transportation phenomenon. Following such motivations in mind, the aim of present continuation is exploring the thermal impact of modified hybrid nanofluid model in complex vertical
channel. Due to high thermal performances, copper (CuO), copper oxide (CuO) and aluminum oxide Al2O3 nanoparticles explore the thermal behavior of modified hybrid nanofluid model. The vertical channel confined the sinusoidal waves on walls. The flow phenomenon is based on peristaltic transport associated to the human body system. The consideration of small Reynolds number hypothesis and larger wavelength approach, the implication of problem has been done. The modeled equations are tackled with shooting technique. Various stream functions with applications of peristaltic transport phenomenon are developed. It is observed that heat transfer is larger in the curved channel as compared to the straight channel. The decomposition of modified hybrid nanoparticles is more effective to improve the heat transfer pattern more effectively.

Keywords

Main Subjects


References:
1. Choi, S.U.S. “Enhancing thermal conductivity of fluids with nanoparticles”, ASME-Publications-Fed., 231, pp. 99-106 (1995). 
2. Boungiorno, J. “Convective transport in nanofluids”, J. Heat. Transfer., 128, pp. 240-50 (2010). https://doi.org/10.1115/1.2150834.
3. Turkyilmazoglu, M. “Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis”, Comput. Meth. Prog. Bio., 187, 105171 (2020). DOI: https://doi.org/10.1016/j.cmpb.2019.105171.
4. Khan, S.U. and Shehzad, A. “Brownian movement and thermophoretic aspects in third grade nanofluid over oscillatory moving sheet”, Phys. Scr., 94(9), 095202 (2019). DOI: 10.1088/1402-4896/ab0661.
5. Ibrahim, W. and Gizewu, T. “Tangent hyperbolic nanofluid with mixed convection flow: an application of improved Fourier and Fick’s diffusion model”, Heat Trans Asian Res., 48, pp. 4217- 4239 (2019). https://doi.org/10.1002/htj.21589.
6. Tayebi, T., Chamkha, A.J., and Djezzar, M. “Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall”, Sci. Iran. B, 26(5), pp. 2770-2783 (2019). DOI: 10.24200/sci.2018.21069.
7. Hayat, T., Masood, F., Qayyum, S., et al. “Novel aspects of Soret and Dufour in entropy generation minimization for Williamson fluid flow”, Sci. Iran., B, 27(5), pp. 2451-2464 (2020). DOI: 10.24200/SCI.2019.52553.2772.
8. Khan, S.U., Waqas, H., Muhammad, T., et al. “Simultaneous effect of bioconvection and velocity slip in three-dimensional flow of Eyring-Powell nanofluid with Arrhenius activation energy and binary chemical reaction”, Int. Commun. Heat Mass Transf., 117, 104738 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104738.
9. Khan, M.N., Nadeem, S., Ullah, N., et al. “Theoretical treatment of radiative Oldroyd-B nanofluid with microorganism pass an exponentially stretching sheet”, Surf. Interfaces, 21, 100686 (2020). https://doi.org/10.1016/j.surfin.2020.100686.
10. Mondal. S., Pal., Computational analysis of bioconvective flow of nanofluid containing microorganisms over a nonlinear stretching sheet with variable viscosity using HAM., J. compute. Des. Eng., 7(2), pp. 251-267 (2020). https://doi.org/10.1093/jcde/qwaa021.
11. Gowda, R.J.P., Kumar, R.N., Aldalbahi, A., et al. “Thermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/downward moving disk”, Surf. Interfaces, 22, 100864 (2021). https://doi.org/10.1016/j.surfin.2020.100864.
12. Acharya, N., “Impacts of different thermal modes of multiple obstacles on the hydrothermal analysis of Fe3O4–water nanofluid enclosed inside a nonuniformly heated cavity”, Heat Transfer, 51(2), pp. 1376-1405 (2022). https://doi.org/10.1002/htj.22356.
13. Patil, P.M., Kulkarni, M., Tonannavar, J.R. “A computational study of the triple-diffusive nonlinear convective nanoliquid flow over a wedge under convective boundary constraints”, Int. Commun. Heat Mass Transf., 128, 105561 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105561.
14. Patil, P.M., Shankar, H.F., Hiremath, P.S., et al. “Nonlinear mixed convective nanofluid flow about a rough sphere with the diffusion of liquid hydrogen”, Alex. Eng. J., 60(1), pp. 1043-1053 (2021). https://doi.org/10.1016/j.aej.2020.10.029.
15. Acharya, N. “Buoyancy driven magnetohydrodynamic hybrid nanofluid flow within a circular enclosure fitted with fins”, Int. Commun. Heat Mass Transf., 133, 105980 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.105980.
16. Madhukesh, J.K., Kumar, N.R., Gowda, R.J.P., et al. “Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach”, J. Mol. Liq., 335, 116103 (2021). https://doi.org/10.1016/j.molliq.2021.116103.
17. Sannad, M., Hussein, A.K., Abidi, A., et al. “Numerical study of MHD natural convection inside a cubical cavity loaded with copper-water nanofluid by using a non-homogeneous dynamic mathematical model”, Mathematics, 10(12), 2072 (2022). https://doi.org/10.3390/math10122072.
18. . Ali, Mousa, A.A.A., Hammouch, Z., et al. “Insight into significance of thermal stratification and radiation on dynamics of micropolar water based TiO2 nanoparticle via finite element simulation”, J. Mater. Res. Technol., 19, pp. 4209-4219 (2022). https://doi.org/10.1016/j.jmrt.2022.06.043.
19. Hassan, M., El-Zahar, E.R., Khan, S.U., et al. “Boundary layer flow pattern of heat and mass for homogenous shear thinning hybrid-nanofluid: An experimental data base modeling”, Numer. Methods Partial Differ. Equ., 37(2), pp. 1234-1249 (2021). https://doi.org/10.1002/num.22575.
20. Bhatti, M.M. and Abdelsalam, S.I. “Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects”, Waves Random Complex, 34(5), pp. 4688-4713 (2024). https://doi.org/10.1080/17455030.2021.1998728.
21. Hamrelaine, S., Kezzar, M., Sari, M.R., et al. “Analytical investigation of hydromagnetic ferro-nanofluid flowing via rotating convergent/divergent channels”, Eur. Phys. J. Plus., 137, 1291 (2022). https://doi.org/10.1140/epjp/s13360-022-03480-2.
22. Shahzad, F., Jamshed, W., Eid, M.R., I., et al. “The effect of pressure gradient on MHD flow of a tri-hybrid Newtonian nanofluid in a circular channel”, J. Magn. Magn. Mater., 568, 170320 (2023). https://doi.org/10.1016/j.jmmm.2022.170320.
23. Sajid, T., Jamshed, W., Ibrahim, R.W., et al. “Quadratic regression analysis for nonlinear heat source/sink and mathematical Fourier heat law influences on Reiner-Philippoff hybrid nanofluid flow applying Galerkin finite element method”, J. Magn. Magn. Mater., 568, 170383 (2023). https://doi.org/10.1016/j.jmmm.2023.170383.
24. Hanif, H., Jamshed, W., Eid, M.R., et al. “Numerical Crank- Nicolson methodology analysis for hybridity aluminium alloy nanofluid flowing based-water via stretchable horizontal plate with thermal resistive effect”, Case Stud. Therm. Eng., 42, 102707 (2023). https://doi.org/10.1016/j.csite.2023.102707.
25. Sajid, T., Pasha, A.A., Jamshed, W., et al. “Radiative and porosity effects of trihybrid Casson nanofluids with Bödewadt flow and inconstant heat source by Yamada-Ota and Xue models”, Alex. Eng. J., 66, pp. 457-473 (2023). https://doi.org/10.1016/j.aej.2022.11.009.
26. Patil, P.M. and Goudar, B. “Time-dependent mixed convection flow of Ag–MgO/water hybrid nanofluid over a moving vertical cone with rough surface”, J. Therm. Anal. Calorim., 147, pp. 10693–10705 (2022). https://doi.org/10.1007/s10973-022-11246- 2.
27. Patil, P.M., Shankar, H.F., and Sheremet, M.A. “Mixed Convection of Silica–Molybdenum Disulphide/ Water Hybrid Nanoliquid over a Rough Sphere., Symmetry, 13, p. 236 (2021). Https://doi.org/10.3390/sym13020236.
28. Patil, P.M. and Shankar, H.F. “Heat transfer attributes of Al2O3- Fe3O4/H2O hybrid nanofluid flow over a yawed cylinder”, Propuls. Power Res., 11(3), pp. 416-429 (2022). https://doi.org/10.1016/j.jppr.2022.06.002. 
29. Patil, P.M. and Benawadi, S. “Shape effects on the mixed convective hybrid nanoliquid flow over a rough slender cylinder with convective condition”, Waves Random Complex, (2022). Https://doi.org/10.1080/17455030.2022.2143930.
30. Abbasi, A., Gul, M., Farooq, W., et al. “A comparative thermal investigation for modified hybrid nanofluid model (Al2O3-SiO2- TiO2)/(C2H6O2) due to curved radiated surface”, Case Stud. Therm. Eng., 37, 102295 (2022). https://doi.org/10.1016/j.csite.2022.102295.
31. Abbasi, A., Al-Khaled, K., Khan, M.I., et al. “Optimized thermal investigation for the modified hybrid nanofluid (Al2O3,CuO,Cu) with nonlinear thermal radiation and shape features”, Case Stud. Therm. Eng., 28, 101425 (2021). https://doi.org/10.1016/j.csite.2021.101425.
32. Javid, K., Bilal, M., Ali, N., et al. “Thermal investigation of peristaltic pumping of modified hybrid nanofluid (Al2O3 − TiO2 − Cu)/H2O) through a complex wavy convergent channel with electro-magneto-hydrodynamic phenomenon”, Proc. Inst. Mech. Eng. E (2022). https://doi.org/10.1177/09544089221076592.
33. Ramesh, K., Tripathi, D., Bhatti, M. M., et al. “Electro-osmotic flow of hydromagnetic dusty viscoelastic fluids in a microchannel propagated by peristalsis”, J. Mol. Liq., 314, 113568 (2020). https://doi.org/10.1016/j.molliq.2020.113568.
34. Rafaqat, R., Khan, A.A., Zaman, A., et al. “Magnetohydrodynamics second grade compressible fluid flow in a wavy channel under peristalsis: Application to thermal energy”, J. Energy Storage, 51, 104463 (2022). https://doi.org/10.1016/j.est.2022.104463.
35. Ullah, I., Shah, S.I., Alam, M.M., et al. “Thermodynamic of Ionslip and magnetized peristalsis channel flow of PTT fluid by considering Lorentz force and Joule heating”, Int. Commun. Heat Mass Transf., 136, 106163 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106163.
36. Bibi, A. and Xu, H. “Entropy generation analysis of peristaltic flow and heat transfer of a jeffery nanofluid in a horizontal channel under magnetic environment”, Math. Probl. Eng., 2019, 2405986 (2019). https://doi.org/10.1155/2019/2405986.
37. Ali, A., Ali, Y., Marwat, D., et al. “Peristaltic flow of nanofluid in a deformable channel with double diffusion”, SN Applied Sci., 2, p. 100 (2020). https://doi.org/10.1007/s42452-019-1867-4.
38. Tripathi, D. and Bég, O.A. “A study on peristaltic flow of nanofluids: Application in drug delivery systems”, Int. J. Heat Mass Transf., 70, pp. 61-70 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.044.
39. Tanveer, A. and Malik, M.Y. “Slip and porosity effects on peristalsis of MHD Ree-Eyring nanofluid in curved geometry”, Ain Shams. Eng. J., 12(1), pp. 955-968 (2021). https://doi.org/10.1016/j.asej.2020.04.008.
40. Bibi, A. and Xu, H. “Peristaltic channel flow and heat transfer of Carreau magneto hybrid nanofluid in the presence of homogeneous/heterogeneous reactions”, Sci. Rep., 10, 11499 (2020). Https://doi.org/10.1038/s41598-020-68409-0.
41. Tanveer, A., Hayat, T., and Alsaedi, A. “Numerical simulation for peristalsis of Sisko nanofluid in curved channel with doublediffusive convection”, Ain Shams. Eng. J., 12(3), pp. 3195-3207 (2021). DOI: https://doi.org/10.1016/j.asej.2020.12.019.
42. Alhazmi, S.E., Imran, A., Awais, M., et al. “Thermal convection in nanofluids for peristaltic flow in a nonuniform channel”, Sci. Rep., 12, 12656 (2022). Https://doi.org/10.1038/s41598-022- 16600-w.
43. McCash, L. B., Akhtar, S., Nadeem, S., et al. “Entropy analysis of the peristaltic flow of hybrid nanofluid inside an elliptic duct with sinusoidally advancing boundaries”, Entropy (Basel)., 23(6), p. 732 (2021). Https://doi.org/10.3390/e23060732.
44. Nadeem, S., Qadeer, S., Akhtar, S., et al. “Eigenfunction expansion method for peristaltic flow of hybrid nanofluid flow having single-walled carbon nanotube and multi-walled carbon nanotube in a wavy rectangular duct”, Sci. Prog., 104(4), pp. 1-14 (2021). DOI: 10.1177/00368504211050292.
Volume 31, Issue 20
Transactions on Mechanical Engineering (B)
November and December 2024
Pages 1926-1938
  • Receive Date: 14 August 2022
  • Revise Date: 28 March 2023
  • Accept Date: 07 October 2023