1. Choi, S.U.S. “Enhancing thermal conductivity of fluids with nanoparticles”, ASME-Publications-Fed., 231, pp. 99-106 (1995).
2. Boungiorno, J. “Convective transport in nanofluids”, J. Heat. Transfer., 128, pp. 240-50 (2010). https://doi.org/10.1115/1.2150834.
3. Turkyilmazoglu, M. “Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis”, Comput. Meth. Prog. Bio., 187, 105171 (2020). DOI: https://doi.org/10.1016/j.cmpb.2019.105171.
4. Khan, S.U. and Shehzad, A. “Brownian movement and thermophoretic aspects in third grade nanofluid over oscillatory moving sheet”, Phys. Scr., 94(9), 095202 (2019). DOI: 10.1088/1402-4896/ab0661.
5. Ibrahim, W. and Gizewu, T. “Tangent hyperbolic nanofluid with mixed convection flow: an application of improved Fourier and Fick’s diffusion model”, Heat Trans Asian Res., 48, pp. 4217- 4239 (2019). https://doi.org/10.1002/htj.21589.
6. Tayebi, T., Chamkha, A.J., and Djezzar, M. “Natural convection of CNT-water nanofluid in an annular space between confocal elliptic cylinders with constant heat flux on inner wall”, Sci. Iran. B, 26(5), pp. 2770-2783 (2019). DOI: 10.24200/sci.2018.21069.
7. Hayat, T., Masood, F., Qayyum, S., et al. “Novel aspects of Soret and Dufour in entropy generation minimization for Williamson fluid flow”, Sci. Iran., B, 27(5), pp. 2451-2464 (2020). DOI: 10.24200/SCI.2019.52553.2772.
8. Khan, S.U., Waqas, H., Muhammad, T., et al. “Simultaneous effect of bioconvection and velocity slip in three-dimensional flow of Eyring-Powell nanofluid with Arrhenius activation energy and binary chemical reaction”, Int. Commun. Heat Mass Transf., 117, 104738 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104738.
9. Khan, M.N., Nadeem, S., Ullah, N., et al. “Theoretical treatment of radiative Oldroyd-B nanofluid with microorganism pass an exponentially stretching sheet”, Surf. Interfaces, 21, 100686 (2020). https://doi.org/10.1016/j.surfin.2020.100686.
10. Mondal. S., Pal., Computational analysis of bioconvective flow of nanofluid containing microorganisms over a nonlinear stretching sheet with variable viscosity using HAM., J. compute. Des. Eng., 7(2), pp. 251-267 (2020). https://doi.org/10.1093/jcde/qwaa021.
11. Gowda, R.J.P., Kumar, R.N., Aldalbahi, A., et al. “Thermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/downward moving disk”, Surf. Interfaces, 22, 100864 (2021). https://doi.org/10.1016/j.surfin.2020.100864.
12. Acharya, N., “Impacts of different thermal modes of multiple obstacles on the hydrothermal analysis of Fe3O4–water nanofluid enclosed inside a nonuniformly heated cavity”, Heat Transfer, 51(2), pp. 1376-1405 (2022). https://doi.org/10.1002/htj.22356.
13. Patil, P.M., Kulkarni, M., Tonannavar, J.R. “A computational study of the triple-diffusive nonlinear convective nanoliquid flow over a wedge under convective boundary constraints”, Int. Commun. Heat Mass Transf., 128, 105561 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105561.
14. Patil, P.M., Shankar, H.F., Hiremath, P.S., et al. “Nonlinear mixed convective nanofluid flow about a rough sphere with the diffusion of liquid hydrogen”, Alex. Eng. J., 60(1), pp. 1043-1053 (2021). https://doi.org/10.1016/j.aej.2020.10.029.
15. Acharya, N. “Buoyancy driven magnetohydrodynamic hybrid nanofluid flow within a circular enclosure fitted with fins”, Int. Commun. Heat Mass Transf., 133, 105980 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.105980.
16. Madhukesh, J.K., Kumar, N.R., Gowda, R.J.P., et al. “Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach”, J. Mol. Liq., 335, 116103 (2021). https://doi.org/10.1016/j.molliq.2021.116103.
17. Sannad, M., Hussein, A.K., Abidi, A., et al. “Numerical study of MHD natural convection inside a cubical cavity loaded with copper-water nanofluid by using a non-homogeneous dynamic mathematical model”, Mathematics, 10(12), 2072 (2022). https://doi.org/10.3390/math10122072.
18. . Ali, Mousa, A.A.A., Hammouch, Z., et al. “Insight into significance of thermal stratification and radiation on dynamics of micropolar water based TiO2 nanoparticle via finite element simulation”, J. Mater. Res. Technol., 19, pp. 4209-4219 (2022). https://doi.org/10.1016/j.jmrt.2022.06.043.
19. Hassan, M., El-Zahar, E.R., Khan, S.U., et al. “Boundary layer flow pattern of heat and mass for homogenous shear thinning hybrid-nanofluid: An experimental data base modeling”, Numer. Methods Partial Differ. Equ., 37(2), pp. 1234-1249 (2021). https://doi.org/10.1002/num.22575.
20. Bhatti, M.M. and Abdelsalam, S.I. “Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects”, Waves Random Complex, 34(5), pp. 4688-4713 (2024). https://doi.org/10.1080/17455030.2021.1998728.
21. Hamrelaine, S., Kezzar, M., Sari, M.R., et al. “Analytical investigation of hydromagnetic ferro-nanofluid flowing via rotating convergent/divergent channels”, Eur. Phys. J. Plus., 137, 1291 (2022). https://doi.org/10.1140/epjp/s13360-022-03480-2.
22. Shahzad, F., Jamshed, W., Eid, M.R., I., et al. “The effect of pressure gradient on MHD flow of a tri-hybrid Newtonian nanofluid in a circular channel”, J. Magn. Magn. Mater., 568, 170320 (2023). https://doi.org/10.1016/j.jmmm.2022.170320.
23. Sajid, T., Jamshed, W., Ibrahim, R.W., et al. “Quadratic regression analysis for nonlinear heat source/sink and mathematical Fourier heat law influences on Reiner-Philippoff hybrid nanofluid flow applying Galerkin finite element method”, J. Magn. Magn. Mater., 568, 170383 (2023). https://doi.org/10.1016/j.jmmm.2023.170383.
24. Hanif, H., Jamshed, W., Eid, M.R., et al. “Numerical Crank- Nicolson methodology analysis for hybridity aluminium alloy nanofluid flowing based-water via stretchable horizontal plate with thermal resistive effect”, Case Stud. Therm. Eng., 42, 102707 (2023). https://doi.org/10.1016/j.csite.2023.102707.
25. Sajid, T., Pasha, A.A., Jamshed, W., et al. “Radiative and porosity effects of trihybrid Casson nanofluids with Bödewadt flow and inconstant heat source by Yamada-Ota and Xue models”, Alex. Eng. J., 66, pp. 457-473 (2023). https://doi.org/10.1016/j.aej.2022.11.009.
26. Patil, P.M. and Goudar, B. “Time-dependent mixed convection flow of Ag–MgO/water hybrid nanofluid over a moving vertical cone with rough surface”, J. Therm. Anal. Calorim., 147, pp. 10693–10705 (2022). https://doi.org/10.1007/s10973-022-11246- 2.
27. Patil, P.M., Shankar, H.F., and Sheremet, M.A. “Mixed Convection of Silica–Molybdenum Disulphide/ Water Hybrid Nanoliquid over a Rough Sphere., Symmetry, 13, p. 236 (2021). Https://doi.org/10.3390/sym13020236.
28. Patil, P.M. and Shankar, H.F. “Heat transfer attributes of Al2O3- Fe3O4/H2O hybrid nanofluid flow over a yawed cylinder”, Propuls. Power Res., 11(3), pp. 416-429 (2022). https://doi.org/10.1016/j.jppr.2022.06.002.
29. Patil, P.M. and Benawadi, S. “Shape effects on the mixed convective hybrid nanoliquid flow over a rough slender cylinder with convective condition”, Waves Random Complex, (2022). Https://doi.org/10.1080/17455030.2022.2143930.
30. Abbasi, A., Gul, M., Farooq, W., et al. “A comparative thermal investigation for modified hybrid nanofluid model (Al2O3-SiO2- TiO2)/(C2H6O2) due to curved radiated surface”, Case Stud. Therm. Eng., 37, 102295 (2022). https://doi.org/10.1016/j.csite.2022.102295.
31. Abbasi, A., Al-Khaled, K., Khan, M.I., et al. “Optimized thermal investigation for the modified hybrid nanofluid (Al2O3,CuO,Cu) with nonlinear thermal radiation and shape features”, Case Stud. Therm. Eng., 28, 101425 (2021). https://doi.org/10.1016/j.csite.2021.101425.
32. Javid, K., Bilal, M., Ali, N., et al. “Thermal investigation of peristaltic pumping of modified hybrid nanofluid (Al2O3 − TiO2 − Cu)/H2O) through a complex wavy convergent channel with electro-magneto-hydrodynamic phenomenon”, Proc. Inst. Mech. Eng. E (2022). https://doi.org/10.1177/09544089221076592.
33. Ramesh, K., Tripathi, D., Bhatti, M. M., et al. “Electro-osmotic flow of hydromagnetic dusty viscoelastic fluids in a microchannel propagated by peristalsis”, J. Mol. Liq., 314, 113568 (2020). https://doi.org/10.1016/j.molliq.2020.113568.
34. Rafaqat, R., Khan, A.A., Zaman, A., et al. “Magnetohydrodynamics second grade compressible fluid flow in a wavy channel under peristalsis: Application to thermal energy”, J. Energy Storage, 51, 104463 (2022). https://doi.org/10.1016/j.est.2022.104463.
35. Ullah, I., Shah, S.I., Alam, M.M., et al. “Thermodynamic of Ionslip and magnetized peristalsis channel flow of PTT fluid by considering Lorentz force and Joule heating”, Int. Commun. Heat Mass Transf., 136, 106163 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106163.
36. Bibi, A. and Xu, H. “Entropy generation analysis of peristaltic flow and heat transfer of a jeffery nanofluid in a horizontal channel under magnetic environment”, Math. Probl. Eng., 2019, 2405986 (2019). https://doi.org/10.1155/2019/2405986.
37. Ali, A., Ali, Y., Marwat, D., et al. “Peristaltic flow of nanofluid in a deformable channel with double diffusion”, SN Applied Sci., 2, p. 100 (2020). https://doi.org/10.1007/s42452-019-1867-4.
38. Tripathi, D. and Bég, O.A. “A study on peristaltic flow of nanofluids: Application in drug delivery systems”, Int. J. Heat Mass Transf., 70, pp. 61-70 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.044.
39. Tanveer, A. and Malik, M.Y. “Slip and porosity effects on peristalsis of MHD Ree-Eyring nanofluid in curved geometry”, Ain Shams. Eng. J., 12(1), pp. 955-968 (2021). https://doi.org/10.1016/j.asej.2020.04.008.
40. Bibi, A. and Xu, H. “Peristaltic channel flow and heat transfer of Carreau magneto hybrid nanofluid in the presence of homogeneous/heterogeneous reactions”, Sci. Rep., 10, 11499 (2020). Https://doi.org/10.1038/s41598-020-68409-0.
41. Tanveer, A., Hayat, T., and Alsaedi, A. “Numerical simulation for peristalsis of Sisko nanofluid in curved channel with doublediffusive convection”, Ain Shams. Eng. J., 12(3), pp. 3195-3207 (2021). DOI: https://doi.org/10.1016/j.asej.2020.12.019.
42. Alhazmi, S.E., Imran, A., Awais, M., et al. “Thermal convection in nanofluids for peristaltic flow in a nonuniform channel”, Sci. Rep., 12, 12656 (2022).
Https://doi.org/10.1038/s41598-022- 16600-w.
43. McCash, L. B., Akhtar, S., Nadeem, S., et al. “Entropy analysis of the peristaltic flow of hybrid nanofluid inside an elliptic duct with sinusoidally advancing boundaries”, Entropy (Basel)., 23(6), p. 732 (2021). Https://doi.org/10.3390/e23060732.
44. Nadeem, S., Qadeer, S., Akhtar, S., et al. “Eigenfunction expansion method for peristaltic flow of hybrid nanofluid flow having single-walled carbon nanotube and multi-walled carbon nanotube in a wavy rectangular duct”, Sci. Prog., 104(4), pp. 1-14 (2021). DOI: 10.1177/00368504211050292.