Conservation voltage reduction technology yields sustainable electrifications: An exploratory study on implementation capability

Document Type : Research Article

Authors

Department of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, P. O. Box 16785-163, Iran

Abstract

Conservation Voltage Reduction (CVR) as a readily available technology can easily tackle line congestion and peak load issues besides meeting the energy conservation by a marginal reduction in voltages of user-end nodes. However, the application of this technology is limited owing to some unclear technical aspects such as its response to industrial loads, load modeling type, and load estimation error. Therefore, this paper aims at presenting a comprehensive analysis of the CVR process to shed light on the various aspects of this technology for operators who seek to implement it. To this end, CVR process is explored based on load composition on a typical feeder with three zones. Different sizes for active and reactive powers in consumers of those zones are taken into consideration. By doing so, not only CVR process with different load arrangements is explored but also effect of the dominant loads on feeders is unveiled. This study also deals with identifying which load modeling type show better robustness to modeling errors. In this manner, CVR process in the pointed cases are performed with a considerable error on the parameters of load models. The obtained results show that in spite of expectations, CVR may have different outputs.

Keywords

Main Subjects


References:
1.Ebrahimi, H., Abapour, M., Mohammadi-Ivatloo, B.,et al. “Security constrained optimal power flow in apower system based on energy storage system withhigh wind penetration”, Sci. Iran. (2020). DOI: 10.24200/sci.2020.53865.3460.
2.Zhu, G., Gao, Y., and Sun, H. “Optimal configurationof a wind-photovoltaic-hydrogen-gas-electric vehiclesintegrated energy system considering multipleuncertainties and carbon reduction”, Sci. Iran. (2023). DOI: 10.24200/sci.2023.60272.6698.
3.Zhang, Q., Guo, Y., Wang, Z., et al. “Distributedoptimal conservation voltage reduction in integratedprimary-secondary distribution systems”, IEEE TransSmart Grid, 12(5), pp. 3889-3900 (2021). DOI: 10.1109/TSG.2021.3088010.
4.Choeum, D. and Choi, D.H. “Vulnerability assessmentof conservation voltage reduction to loadredistribution attack in unbalanced active distributionnetworks”, IEEE Trans Industr Inform, 17(1), pp. 473-483 (2020). DOI: 10.1109/TII.2020.2980590.
5.Tian, J., Li, K., and Xue, W. “An adaptive ensemblepredictive strategy for multiple scale electrical energyusages forecasting”, Sustain. Cities Soc, 66, 102654(2021). DOI: 10.1016/j.scs.2020.102654.
6.Pamshetti, V.B., Singh, S., and Singh, S.P. “Reductionof energy demand via conservation voltage reductionconsidering network reconfiguration and soft openpoint”, Int. Trans. Electr., 30(1), e12147 (2020). DOI: 10.1002/2050-7038.12147.
7.Chen, B., Xiong, R., Li, H., et al. “Pathways forsustainable energy transition”, J. Clean. Prod, 228,pp. 1564-1571 (2019). DOI: 10.1016/j.jclepro.2019.04.372.
8.Diaz-Aguiló, M., Sandraz, J., Macwan, R., et al.“Field-validated load model for the analysis of CVRin distribution secondary networks: Energyconservation”, IEEE Trans. Power Deliv, 28(4), pp.2428-2436 (2013). DOI: 10.1109/TPWRD.2013.2271095.
9.Shukla, S., Eldali, F., and Pinney, D. “Cost-benefitanalysis of conservation voltage reductionincorporated in open modeling framework” In 2018IEEE Power and Energy Society General Meeting(PESGM), pp. 1-5, IEEE (August, 2018). DOI: 10.1109/PESGM.2018.8586192.
10.Mahendru, A. and Varma, R.K. “Reduction in systemlosses and power demand by combination of optimalpower flow and conservation voltage reduction usingsmart PV inverters”, In Proceedings of the IEEEPower and Energy Society General Meeting, Atlanta,GA, USA, 4–8 August 2019; Volume (2019). DOI: 10.1109/PESGM40551.2019.8973566.
11.Wang, Z. and Wang, J. “Review on implementationand assessment of conservation voltage reduction”,IEEE Trans. Power Syst, 29(3), pp. 1306-1315 (2013). DOI: 10.1109/TPWRS.2013.2288518.
12.Wang, Z., Begovic, M., and Wang, J. “Analysis ofconservation voltage reduction effects based onmultistage SVR and stochastic process”, IEEE TransSmart Grid, 5(1), pp. 431-439 (2013). DOI: 10.1109/TSG.2013.2279836.
13.Wilson, T.L. “Measurement and verification ofdistribution voltage optimization results for the IEEEpower and energy society”, In IEEE PES GeneralMeeting, pp. 1-9 IEEE (2010). DOI: 10.1109/PES.2010.5589762.
14.Dwyer, A., Nielsen, R.E., Stangl, J., et al. “Load tovoltage dependency tests at BC Hydro”, IEEETrans. Power Syst, 10(2), pp. 709-715 (1995). DOI: 10.1109/59.387907.
15.Warnock, V. and Kirkpatrick, T. “Impact of voltagereduction on energy and demand: Phase II”, IEEETrans. Power Syst., 1, pp. 92–95 (1986). DOI: 10.1109/TPWRS.1986.4334910.
16.Erickson, J. and Gilligan, S. “The effects of voltagereduction on distribution circuit loads” , IEEE Trans.Power App. Syst., pp. 2014–2018 (1982). DOI: 10.1109/TPAS.1982.317449.
17.Korunović, L.M., Milanović, J.V., Djokic, S.Z., et al.“Recommended parameter values and ranges of mostfrequently used static load models”, IEEE Trans.Power Syst., 33(6), pp. 5923-5934 (2018). DOI: 10.1109/TPWRS.2018.2834725.
18.De Steese, J.G., Englin, J.E., and Sands, R.D.“Conservation voltage reduction potential in thePacific Northwest”, (No. PNL-SA-17705; CONF-900801-37), Pacific Northwest Lab., Richland, WA(USA) (1990). DOI: 10.1109/IECEC.1990.716430.
19.Diawuo, F.A., Pina, A., and Baptista, P.C. “Energyefficiency deployment: A pathway to sustainableelectrification in Ghana”, J. Clean. Prod, 186, pp. 544-557 (2018). DOI: 10.1016/j.jclepro.2018.03.088.
20.Zhang, Y., Ren, S., Dong, Z.Y., et al. “Optimalplacement of battery energy storage in distributionnetworks considering conservation voltage reductionand stochastic load composition”, IET Gener. Transm.Distrib., 11(15), pp. 3862-3870 (2017).
DOI: 10.1049/iet-gtd.2017.0508.
21.Quijano, D.A. and Padilha-Feltrin, A. “Optimalintegration of distributed generation and conservationvoltage reduction in active distribution networks”. Int.J. Electr. Power Energy Syst., 113, pp. 197-207 (2019). DOI: 10.1016/j.ijepes.2019.05.039.
22.Zhang, Q., Dehghanpour, K., and Wang, Z.“Distributed CVR in unbalanced distribution systemswith PV penetration”, IEEE Trans Smart Grid, 10(5),pp. 5308-5319 (2018). DOI: 10.1109/TSG.2018.2880419.
23.Gutierrez-Lagos, L. and Ochoa, L.F. “OPF-basedCVR operation in PV-rich MV–LV distributionnetworks”, IEEE Trans. Power Syst., 34(4), pp. 2778-2789 (2019). DOI: 10.1109/TPWRS.2019.2894795.
24.Bonilla, S.H., Almeida, C.M., Giannetti, B.F., et al.“The roles of cleaner production in the sustainabledevelopment of modern societies: an introduction tothis special issue”, J. Clean. Prod, 18(1), pp. 1-5(2010). DOI: 10.1016/j.jclepro.2009.09.001.
25.Bokhari, A., Raza, A., Diaz-Aguiló, M., et al.“Combined effect of CVR and DG penetration in thevoltage profile of low-voltage secondary distributionnetworks”, IEEE Trans. Power Deliv., 31(1), pp. 286-293 (2015). DOI: 10.1109/TPWRD.2015.2422308.
26.Wang, J. “Analysis of energy savings of CVRincluding thermostatic loads in distribution systems”,In 2018 IEEE Power and Energy Society GeneralMeeting (PESGM), pp. 158-168, IEEE (2018). DOI: 10.1109/PESGM.2018.8586070.
27.Hizarci, H. and Turkay, B.E. “Impact of distributedgeneration on radial distribution network with variousload models”, In 2017 52nd International UniversitiesPower Engineering Conference (UPEC) pp. 1-5. IEEE(August, 2017). DOI: 10.1109/UPEC.2017.8231905.
28.Hossan, M.S. and Chowdhury, B. “Comparison oftime-varying load models for estimating CVR factorand VSF using dual-stage adaptive filter”, IEEE Trans. Power Deliv., 34(3), pp. 1001-1010 (2019). DOI: 10.1109/TPWRD.2019.2903167.
29.Leinakse, M. and Kilter, J. “Conversion error ofexponential to second order polynomial ZIP loadmodel conversion”, In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/IandCPS Europe), pp. 1-5, IEEE (June, 2018). DOI: 10.1109/EEEIC.2018.8493667.
30.Rupa, J.M. and Ganesh, S. “Power flow analysis forradial distribution system using backward/forwardsweep method”, Int. J. Electr. Comput. Eng., 8(10), pp. 1540-1544 (2014).
31.Aghdam, F.H., Salehi, J., and Ghaemi, S.“Contingency based energy management of multi-microgrid based distribution network”, Sustain. CitiesSoc., 41, pp. 265-274 (2018). DOI: 10.1016/j.scs.2018.05.019.
32.Price, W.W., Chiang, H.D., Clark, H.K., et al. “Loadrepresentation for dynamic performance analysis”,IEEE Trans. Power Syst., 8(2), pp. 472-482 (1993).
33.Bokhari, A., Alkan, A., Dogan, R., et al.“Experimental determination of the ZIP coefficientsfor modern residential, commercial, and industrialloads”, IEEE Trans. Power Deliv., 29(3), pp. 1372-1381 (2013). DOI: 10.1109/TPWRD.2013.2285096.
34.Mehrjerdi, H. and Hemmati, R, “Stochastic model forelectric vehicle charging station integrated with windenergy”, Sustain. Energy Technol. Assess., 37, 100577(2020). DOI: 10.1016/j.seta.2019.100577.
35.Dolatabadi, S.H., Ghorbanian, M., Siano, et al. “Anenhanced IEEE 33 bus benchmark test system for distribution system studies”, IEEE Trans. Power Syst., 36(3), pp. 2565-2572 (2020). DOI: 10.1109/TPWRS.2020.30380.
Volume 32, Issue 5
Transactions on Computer Science & Engineering and Electrical Engineering
March and April 2025 Article ID:6979
  • Receive Date: 10 July 2022
  • Revise Date: 29 August 2023
  • Accept Date: 27 September 2023