Effects of groundwater table on buried pipeline response to a surface explosion

Document Type : Article

Authors

1 Professor of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

2 Civil and Environmental Engineering Dept., Tarbiat Modares University, Tehran, Iran

Abstract

Groundwater table is a fluctuating factor changing soil structure and affecting pipes' response to any load, such as an explosion. After validation with the results of previous studies, several numerical models were elaborated with ten different groundwater levels and two states of 1. Empty, 2. Pressurized for a buried pipe to investigate this for an explosion load. These simulations were solved by a Finite Element Method (FEM) solver. This research only studies the effects of non-cohesive soils and neglects the semi-saturated part of the soil for simplicity. The pipe's effective stress and plastic strain in each scenario were studied. The results state that the most critical scenario is when the water table is around the pipe crown, whether the pipe is empty or pressurized, with considerable excess stress compared to the absence of groundwater table. The deformation mode is also hugely affected by the water table, changing from local, forming a dent, to non-local. The internal pressure of the pipe also considerably reduces the pipe stresses and strains whether the surrounding soil is saturated or dry. Such results are certainly impactful in efficiently designing buried pipelines, which most existing guidelines and codes have not considered.

Keywords

Main Subjects



Articles in Press, Accepted Manuscript
Available Online from 03 September 2023
  • Receive Date: 23 April 2022
  • Revise Date: 06 September 2022
  • Accept Date: 03 September 2023