Exfoliated poly (styrene-co-urethane) grafted-poly methylmethacrylate/layered double hydroxide nanocomposite synthesized by metal catalyzed living radical polymerization and solvent blending method

Document Type : Article

Authors

1 Marand Faculty of Technical and Engineering, University of Tabriz 5166616471, Tabriz, Iran.

2 Department of Chemistry, Payame Noor University, P.O. Box. 19395-3697, Tehran, Iran.

3 Department of Polymer, Engineering Faculty, University of Bonab, Bonab 55517, Iran.

Abstract

In this research, a facile strategy was employed for the synthesis of terpolymer derivatives from polystyrene (PSt), polyurethane (PU), poly (methyl methacrylate) (PMMA), and its organo-modified Zn Al LDH (layered double hydroxide) by in situ ATRP. For this purpose, firstly, LDH nanoparticles were modified with sodium dodecyl sulfonate (SDS) by the anion exchange reaction of Zn-Al-LDH. Secondly, PU macroinitiator was obtained from a solvent composed of 9-decen-1-ol and used in controlled graft copolymerization of styrene to afford PU-co-Pst copolymer. Then, the synthesized PU-co-St was brominated by N-bromosuccinimide (NBS) to obtain a copolymer with the bromine group. In the following, living radical polymerization of MMA was done in the presence of brominated PU-co-St and CuBr /Bpy (2, 2’-bipyridine catalyst to prepare the (PMMA-g-PSt-g-PU) terpolymer. Finally, (PMMA-g-PSt-g-PU)/ ZnAl LDH nanocomposite was successfully synthesized by the solution intercalation method. FE-SEM images showed that surface morphologies of Zn-Al (SDS) and Zn-Al-LDH leads to sheet-like and hexagonal morphology. Investigation of thermal properties using DSC and TGA exhibited that the prepared (PMMA-g-PSt-g-PU) /Zn-Al-LDH nanocomposite has a higher thermal stability compared to neat PU. The synthesized terpolymer and (PMMA-g-PSt-g-PU)/ Zn-Al-LDH nanocomposite can be used as a reinforcing agent for polymeric nanocomposites due to its high LDH properties.

Keywords

Main Subjects


References:
1. Park, J.S., Lim, Y.M., and Nho, Y.C. "Preparation of high-density polyethylene/waste polyurethane blends compatibilized with polyethylene-graft-maleic anhydride by radiation", Materials, 8(4), pp. 1626-1635 (2015). DOI: 10.3390/ma8041626.
2. Park, J.S., Lim, Y.M., and Nho, Y.C. "Radiationinduced grafting with one-step process of waste polyurethane onto high-density polyethylene", Materials, 9(1), p. 13 (2016). DOI: 10.3390/ma9010013.
3. Simon, D., Garcia, M.T., Lucas, A.D., et al. "Glycolysis of  flexible polyurethane wastes using stannous octoate as the catalyst: Study on the influence of reaction parameters", Polymer Degradation and Stability, 98(1), pp. 144-149 (2013). DOI: 10.1016/j.polymdegradstab.2012.10.017.
4. Beyer, G. "Flame retardant properties of EVAnanocomposites and improvements by combination of nanofillers with aluminium trihydrate", Fire and Materials, 25(5), pp. 193-197 (2001). DOI: 10.1002/fam.776.
5. Kim, J.H. and Kim, S.C. "Controlling the morphology of polyurethane/polystyrene interpenetrating polymer networks for enhanced blood compatibility", Journal of Applied Polymer Science, 84(2), pp. 379-387 (2002). DOI: 10.1002/app.10358.
6. Tanobe, V.O.A., Sydenstricker, T.H.D., Amico, S.C., et al. "Evaluation of  flexible postconsumed polyurethane foams modified by polystyrene grafting as sorbent material for oil spills", Journal of Applied Polymer Science, 111(4), pp. 1842-1849 (2009). DOI: 10.1002/app.29180.
7. Duong, H.T.T. and Burford, R.P. "Effect of foam density, oil viscosity, and temperature on oil sorption behavior of polyurethane", Journal of Applied Polymer Science, 99(1), pp. 360-367 (2006). DOI: 10.1002/app.22426.
8. Koenig, A., Ziener, U., Schaz, A., et al. "Polyurethaneblock-polystyrene prepared by polymerization in miniemulsion", Macromolecular Chemistry and Physics, 208(2), pp. 155-163 (2007). DOI: 10.1002/macp.200600448.
9. Calvete, D.P., Holguin, D.F.R., and Luna, M.P. "Development of styrene-grafted polyurethane by radiation-based techniques", Procedia Material Science, 9(6), p. 491 (2015).
10. Jahny, K., Adler, H.P., and Moritz, H. "Kinetics of aqueous heterophase polymerization of styrene with polyurethane emulsifier", Macromolecular Chemistry and Physics, 202(14), pp. 2915-2920 (2001).DOI: 10.1002/1521-3935(20011001)202:143.0.CO;2-B.
11. Gupta, B., Srivastava, A., Grover, N., et al. "Plasma induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) monofilament", Indian Journal of Fibre and Textile, 35(1), pp. 9-14 (2010).
12. Rong, M.Z., Ji, Q.L., Zhang, M.Q., et al. "Graft polymerization of vinyl monomers onto nanosized alumina particles", European Polymer Journal, 38(8), pp. 1573-1582 (2002). DOI: 10.1016/S0014-3057(02)00037-X.
13. Chan, C.M. and KO, T.M. "Polymer surface modification by plasmas and photons", Surface Science Reports, 24(1-2), pp. 1-54 (1996). DOI: 10.1016/0167-5729(96)80003-3.
14. Abbasian, M., Masoumi, B., and Rashidzadeh, B. "Versatile method via reversible additionfragmentation transfer polymerization for synthesis of poly styrene/ZnO-nanocomposite", Polymer Engineering and Science, 56(2), pp. 187-195 (2016). DOI: 10.1002/pen.24242.
15. Hatamzadeh, M. and Jaymand, M. "Synthesis of conductive polyaniline-modified polymers via a combination of nitroxide-mediated polymerization and "click chemistry", RSC Advances, 54(4), pp. 28653-28663(2014). DOI: 10.1039/c4ra00864b.
16. Wang, J.S. and Matyjaszewski, K. "Controlled/living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes", Journal of the American Chemical Society, 117(20), pp. 5614-5615 (1995). DOI: 10.1021/ja00125a035.
17. Abbasian, M., Jaymand, M., and Esmaeily Shoja, S. "Synthesis and characterization of a terpolymer derived from styrene, methyl styrene, and polyaniline and its organoclay nanocomposite", Journal of Applied Polymer Science, 125(21), pp. 131-140 (2012).DOI: 10.1002/app.35391.
18. Jaymand, M., Hatamzadeh, M., and Omidi, Y. "Modification of polythiophene by the incorporation of processable polymeric chains: Recent progress in synthesis and applications", Progress in Polymer Science, 47, pp. 26-69 (2015). DOI: 10.1016/j.progpolymsci.2014.11.004.
19. Abbasian, M., Bakhshi, M., Jaymand, M., et al. "Nitroxide-mediated graft copolymerization of styrene from cellulose and its polymer/montmorillonite nanocomposite", Journal of Elastomers and Plastic, 51(5), pp. 1-17 (2018). DOI: 10.1177/00952443187994.
20. Karaj-Abad, S.G., Abbasian, M., and Jaymand, M. "Grafting of poly [(methyl methacrylate)-blockstyrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite", Carbohydrate Polymers, 152(5), pp. 297-305 (2016).DOI: 10.1016/j.carbpol.2016.07.017.
21. Nicolas, J., Guillaneuf, Y., Lefay, C., et al. "Degradable and comb-like PEG-Based copolymers by nitroxide-mediated radical ring-opening polymerization", Progress in Polymer Science, 14(10), pp. 3769- 3779 (2013). DOI: 10.1021/bm401157g.
22. Mohammad-Rezaei, R., Massoumi, B., Eskandani, M., et al. "A new strategy for the synthesis of modified novolac resin and its polymer/clay nanocomposite", Express Polymer Letters, 13(6), pp. 543-552 (2019).DOI: 10.3144/expresspolymlett.2019.46.
23. Rafiei, H., Abbasian, M., and Yegani, R. "Synthesis of well-defined poly (n-vinylpyrrolidone)/n-TiO2 nanocomposites by xanthate-mediated radical polymerization", Iranian Polymer Journal, 29(5), pp. 371- 381 (2020). DOI: 10.1007/s13726-020-00795-8.
24. Abbasian, M., Hasanzadeh, P., Mahmoodzadeh, F., et al. "Novel cationic cellulose-based nanocomposites for targeted delivery of methotrexate to breast cancer cells", Macromolecular, 57(2), pp. 99-115 (2020). DOI: 10.1080/10601325.2019.1673174.
25. Abbasian, M., Razavi, L., Jaymand, M., et al. "Synthesis and characterization of poly (styrene-blockacrylic acid)/Fe3O4 magnetic nanocomposite using reversible addition-fragmentation chain transfer polymerization", Scientica Iranica, 26(3), pp. 1447-1456(2019). DOI: 10.24200/sci.2019.21232.
26. Mahmoodzadeha, F., Abbasian, M., Jaymandc, M., et al. "A novel gold-based stimuli-responsive theranostic nanomedicine for chemo-photothermal therapy of solid tumors", Materials Science and Engineering, 93, pp. 880-889 (2018). DOI: 10.1016/j.msec.2018.08.067.
27. Abbasian, M., Seyyedi, M., and Jaymand, M. "Modification of thermoplastic polyurethane through the grafting of well-defined polystyrene and preparation of its polymer/clay nanocomposite", Polymer Bulletin, 77(3), 1107-1120 (2020). DOI: 10.1007/s00289-019-02773-4.
28. Abbasian, M., Ghaeminia, H., and Jaymand, M. "A facile and ecient strategy for the functionalization of multiple-walled carbon nanotubes using well-defined polypropylene-grafted polystyrene", Applied Physics A., 124(522), pp. 1-9 (2018). DOI: 10.1007/s00339-018-1943-4.
29. Rafiei, H., Abbasian, M., and Yegani, R. "Synthesis of well-defined poly (n-vinylpyrrolidone)/n-TiO2 nanocomposites by xanthate-mediated radical polymerization", Iranian Polymer Journal, 29, pp. 371- 381 (2020). DOI: 10.1007/s13726-020-00795-8.
30. Massoumi, B., Abbasian, M., Mohammad, R.R., et al. "Polystyrene-modified novolac epoxy resin/clay nanocomposite: Synthesis, and characterization", Polymers Advanced Technologies, 30(6), pp. 1484- 1492 (2019). DOI: 10.1002/pat.4580.
31. Matyjaszewski, K. and Tsarevsky, N.V. "Macromolecular engineering by atom transfer radical polymerization", Journal of the American Chemical Society, 136(18), pp. 6513-6533 (2014). DOI:10.1021/ja408069v DOI: 10.1039/c4py01457j.
32. Xue, Z., He, D., and Xie, X. "Iron-catalyzed atom transfers radical polymerization", Polymer Chemistry, 6(10), pp. 1660-1687 (2015).
33. Summerlin, B.S., Tsarevsky, N.V., Louche, G., et al. "Highly ecient "click" functionalization of poly (3-azidopropylmethacrylate) prepared by ATRP", Macromolecules, 38, pp. 7540-7545 (2005). DOI: 10.1021/ma0511245.
34. Chiu, C.W., Huang, T.K., Wang, Y.C., et al. "Intercalation strategies in clay/polymer hybrids", Progress in Polymer Science, 39(3), pp. 443-485 (2014). DOI: 10.1016/j.progpolymsci.2013.07.002.
35. Abbasian, M., Pakzad, M., and Amirmanesh, M. "Polymericaly modified clays to preparation of polystyrene nanocomposite by nitroxide mediated radical polymerization and solution blending methods", Polymer Composites, 38(6), pp. 1127-1134 (2017). DOI: 10.1002/pc.23675.
36. Sarbu, T., Lin, K.Y., Spanswick, J., et al. "Synthesis of hydroxy-telechelic poly (methyl acrylate) and polystyrene by atom transfer radical coupling", Macromolecules, 37(26), pp. 9694-9700 (2004). DOI:10.1021/ma0484375.
37. Zare, Y. and Garmabi, H. "Thickness, modulus and strength of interphase in clay/polymer nanocomposites", Applied Clay Science, 66(105-106), pp. 66-70 (2015). DOI: 10.1016/j.clay.2014.12.016.
38. Madusanka, N., De Silva, K.M.N., and Amaratunga, G. "A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media", Carbohydrate Polymers, 134, pp. 695-699 (2015). DOI: 10.1016/j.carbpol.2015.08.030.
39. Kotal, M. and Bhowmick, A.K. "Polymer nanocomposites from modified clays: Recent advances and challenges", Progress in Polymer Science, 51, pp. 127- 187 (2015). DOI: 10.1016/j.progpolymsci.2015.10.001.
40. Suter, J.L., Groen, D., and Coveney, P.V. "Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties", Advanced Materials, 27, pp. 966-984 (2015). DOI: 10.1002/adma.201403361.
41. Chu, C.C., Chiang, M.L., Tsai, C.M., et al. "Exfoliation of montmorillonite clay by mannich polyamines with multiple quaternary salts", Macromolecules, 38(15), pp. 6240-6243 (2005). DOI:10.1021/ma0503716.
42. Moon, S.Y., Kim, J.K., and Lee, C.N. "Polyurethane/montmorillonite nanocomposites prepared from crystalline polyols, using 1, 4- butanediol and organoclay hybrid as chain extenders", European Polymer Journal, 40(8), pp. 1615-1621 (2004). DOI: 10.1016/j.eurpolymj.2004.04.018.
43. Pattanyak, A. and paul, D.R. "Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure", Polymer, 47(22), pp. 7760-7773 (2006). DOI: 10.1016/j.polymer.2006.08.067.
44. Xu, Y., Petrovic, Z., Das, S., et al. "Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments", Polymer, 49(19), pp. 4248-4258 (2008). DOI: 10.1016/j.polymer.2008.07.027.
45. Uemura, T., Kaseda1, T., Sasaki, Y., et al. "Mixing of immiscible polymers using nanoporous coordination templates", Nature Communications, 6, pp. 1-8 (2015). DOI: 10.1038/ncomms8473.
46. Abbasian, M., Seyyedi, M., and Jaymand, M. "Modifcation of thermoplastic polyurethane through the grafting of well-defned polystyrene and preparation of its polymer/clay nanocomposite", 77(3), pp. 1107- 1120 (2019). DOI: 10.1007/s00289-019-02773-4.
47. Mozaffari, Z., Hatamzadeh, M., Massoumi, B., et al. "Synthesis and characterization of a novel stimuliresponsive magnetite nanohydrogel based on poly (ethylene glycol) and poly(N-isopropylacrylamide) as drug carrier", Journal of Applied Polymer Science, 135(36), pp. 46657-46657 (2018). DOI: 10.1002/app.46657.
48. Farnoudian, A. H., Kangari, S., Massoumi, B., et al. "Determination of losartan potassium in the presence of hydrochlorothiazide via a combination of magnetic solid phase extraction and fluorometry techniques in urine samples", RSC Advances, 5(124), pp. 102895- 102903 (2015). DOI: 10.1039/c5ra20117a.
Volume 31, Issue 9
Transactions on Chemistry and Chemical Engineering (C)
May and June 2024
Pages 681-691
  • Receive Date: 10 February 2022
  • Revise Date: 16 July 2023
  • Accept Date: 03 September 2023