References:
1. Hoeven, M. van der, Transition to Sustainable Buildings: Strategies and Opportunities to 2050, International Energy Agency (2013), ISBN:9264202412, 9789264202412.
2. Wang, K., Yan, T., Li, R.K., et al. "A review for Ca(OH)2/CaO thermochemical energy storage systems", J. Energy Storage, 50(February) (2022). https://doi.org/10.1016/j.est.2022.104612.
3. Zondag, H.A., Kalbasenka, A., Essen, M., et al., First Studies in Reactor Concepts for Thermochemical Storage, ECN Report (2008). https://api.semanticscholar.org/CorpusID:186496874.
4. Bonaccorsi, L., Calabrese, L., Alioto, S., et al. "Surface silanation of alumina-silica zeolites for adsorption heat pumping", Renew. Energy, 110, pp. 79-86 (2017). https://doi.org/10.1016/j.renene.2016.09.030.
5. Whiting, G., Grondin, D., Bennici, S., et al. "Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials", Sol. Energy Mater. Sol. Cells, 112, pp. 112-119 (2013). https://doi.org/10.1016/j.solmat.2013.01.020.
6. Aristov, Y.I. "Novel materials for adsorptive Heat pumping and storage: Screening and nanotailoring of sorption properties", J. Chem. Eng. Japan, 40(13), pp. 1242-1251 (2007). https://doi.org/10.1252/jcej.07WE228.
7. Henninger, S.K., Jeremias, F., Kummer, H., et al. "Novel sorption materials for solar heating and cooling", Energy Procedia, 30, pp. 279-288 (2012). https://doi.org/10.1016/j.egypro.2012.11.033.
8. Janchen, J., Ackermann, D., Weiler, E., et al. "Calorimetric investigation on zeolites, AlPO4's and CaCl2 impregnated attapulgite for thermochemical storage of heat", Thermochim. Acta, 434(1-2), pp. 37-41 (2005). https://doi.org/10.1016/j.tca.2005.01.009.
9. Barreneche, C., Fernandez, A.I., Cabeza, L.F., et al. "Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite", Appl. Energy, 137, pp. 726-730 (2015). https://doi.org/10.1016/j.apenergy.2014.09.025.
10. Padamurthy, A., Nandanavanam, J., and Rajagopalan, P. "Thermal stability evaluation of selected zeolites for sustainable thermochemical energy storage", Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1- 14 (2021). https://doi.org/10.1080/15567036.2021.1880502.
11. Lia, K., Bardy, D., Djebbar, R., et al. "Natural zeolites as host matrices for the development of low-cost and stable thermochemical energy storage materials", J. Porous Mater., 30, pp. 163-173 (2023). https://doi.org/10.1007/s10934-022-01277-3.
12. Karim Nejhad, M. and Aydin, D. "Synthesize and hygro-thermal performance analysis of novel APC-CaCl2 composite sorbent for lowgrade heat recovery, storage, and utilization", Energy Sources, Part A Recover. Util. Environ. Eff., 43(23), pp. 3011-3031 (2019). https://doi.org/10.1080/15567036.2019.1666187.
13. Padamurthy, A., Nandanavanam, J., and Rajagopalan, P. "Sustainable and open sorption system for lowtemperature heat storage applications", Int. J. Energy Res., 46, pp. 20004-20020 (2022). https://doi.org/10.1002/er.786714. Whiting, G.T., Grondin, D., Stosic, D., et al. "Zeolite- MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption", Sol. Energy Mater. Sol. Cells, 128, pp. 289-295 (2014).
https://doi.org/10.1016/j.solmat.2014.05.016.
15. Kubota, M., Matsumoto, S., and Matsuda, H. "Enhancement of hydration rate of LiOH by combining with mesoporous carbon for Low-temperature chemical heat storage", Appl. Therm. Eng., 150(December 2018), pp. 858-863 (2019).
https://doi.org/10.1016/j.applthermaleng.2019.01.049.
16. Jakubinek, M.B., Zhan, B.Z., and White, M.A. "Temperature-dependent thermal conductivity of powdered zeolite NaX", Microporous Mesoporous Mater., 103(1-3), pp. 108-112 (2007).
https://doi.org/10.1016/j.micromeso.2007.01.040.
17. Wang, L., Gandorfer, M., Selvam, T., et al. "Determination of faujasite-type zeolite thermal conductivity from measurements on porous composites by laser ash method", Mater. Lett., 221, pp. 322-325 (2018).
https://doi.org/10.1016/j.matlet.2018.03.157.
18. Henao-Sierra, W., Romero-Saez, M., Gracia, F., et al. "Water vapor adsorption performance of Ag and Ni modified 5A zeolite", Microporous Mesoporous Mater., 265(February), pp. 250-257 (2018).
https://doi.org/10.1016/j.micromeso.2018.02.036.
19. Pino, L., Aristov, Y.I., Cacciola, G., et al. "Composite materials based on zeolite 4A for adsorption heat pumps", Adsorption, 3(1), pp. 33-40 (1996). https://doi.org/10.1007/BF01133005.
20. Liu, P. and Chen, G.F. "Characterization methods: Physical properties", In Porous Materials Processing and Applications, pp. 493-532 (2014). ISBN-13: 978-0124077881.
21. Kvalvag Schnell, S. "Molecular simulations of zeolites: Heterogeneous systems at equilibrium and nonequilibrium", (2013). ISBN: 978-94-6186-211-2.
22. Guilleminot, J.J., Choisier, A., Chalfen, J.B., et al. "Heat transfer intensification in fixed bed adsorbers", Heat Recover. Syst. CHP, 13(4), pp. 297-300 (1993). https://doi.org/10.1016/0890-4332(93)90052-W
23. Gorgojo, P., Uriel, S., Tellez, C., et al. "Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation", Microporous Mesoporous Mater., 115, pp. 85-92 (2008).
https://doi.org/10.1016/j.micromeso.2007.11.046.
24. Singh, D.N. and Kolay, P.K. "Simulation of ash-water interaction and its influence on ash characteristics", Prog. Energy Combust. Sci., 28, pp. 267-299 (2002). https://doi.org/10.1016/S0360-1285(01)00018-1
25. Jha, B. and Singh, D.N. "A review on synthesis, characterization and industrial applications of yash zeolites", J. Mater. Educ., 33, pp. 65-132 (2011). https://doi.org/10.1002/chin.201225227
26. Mintova, S., Verified Syntheses of Zeolitic Materials, Third Revised Edition (2016). ISBN: 978-0-692-68539-6.
27. Breck, D.W. "Recent advances in zeolite science", In Advances in Chemistry, pp. 1-19 (1974). https://doi.org/10.1021/ba-1971-0101.ch001.
28. Wang, X., Plackowski, C.A., and Nguyen, A.V. "X-ray photoelectron spectroscopic investigation into the surface effects of sulphuric acid treated natural zeolite", Powder Technol., 295, pp. 27-34 (2016).
https://doi.org/10.1016/j.powtec.2016.03.025.
29. Stocker, M. "X-Ray photoelectron spectroscopy on zeolites and related materials", Microporous Mater., 6(5-6), pp. 235-257 (1996). https://doi.org/10.1016/0927-6513(96)00034-X.
30. Francoise, R., Jean, R., and Kenneth, S., Adsorption by Powder and Porous Solids, Principles, Methodology and Applications, Acadamic Press (1999). https://doi.org/10.1016/B978-0-12-598920-6. X5000-3
31. Vyas, R.K. and Kumar, S. "Estimation of temperature-dependent thermal conductivity of a packed bed of 13X molecular sieves", Ind. Eng. Chem. Res., 34(11), pp. 4058-4062 (1995).
https://doi.org/10.1021/ie00038a047.
32. Griesinger, A., Spindler, K., and Hahne, E. "Measurements and theoretical modelling of the effective thermal conductivity of zeolites", Int. J. Heat Mass Transf., 42(23), pp. 4363-4374 (1999).
https://doi.org/10.1016/S0017-9310(99)00096-4.
33. Schnell, S.K. and Vlugt, T.J.H. "Thermal conductivity in zeolites studied by non-equilibrium molecular dynamics simulations", Int. J. Thermophys., 34(7), pp. 1197-1213 (2013).
https://doi.org/10.1007/s10765-013-1467-2.
34. Murashov, V.V. "Thermal conductivity of model zeolites: molecular dynamics simulation study", J. Phys. Condens. Matter-IOPscience, 11(5), pp. 1261-1271 (1999). https://doi.org/10.1088/0953-8984/11/5/013
35. Fraenkel, D., Andersen, P.C., Cooper, G., et al. "A modified thermogravimetric analysis apparatus of improved performance", Ind. Eng. Chem. Reserarch, 41, pp. 1885-1891 (2002).https://doi.org/10.1021/ie010565j
36. Aristov, Y.I. "Challenging offers of material science for adsorption heat transformation: A review", Appl. Therm. Eng., 50(2), pp. 1610-1618 (2013). https://doi.org/10.1016/j.applthermaleng.2011.09.003.