Sustainable thermochemical energy storage through eco-friendly zeolites - A characterization study

Document Type : Article

Authors

1 - Department of Mechanical Engineering, Hyderabad Campus, BITS-Pilani, Hyderabad-500 078, India - Department of Mechanical Engineering, Sri Venkateswara College of Engineering and Technology, Chittoor-517217, A.P., India

2 Department of Mechanical Engineering, Hyderabad Campus, BITS-Pilani, Hyderabad-500 078, India

Abstract

Judicious utilization of natural resources always helps protect the environment from several ill-effects. This paper was aimed at exploring the merits of natural and environment friendly zeolites towards sustainable thermochemical energy storage. Sorption behaviour of selected zeolites were investigated using a differential thermogravimetric analyser. The desorption kinetics was studied by heating the materials from room temperature to 600 °C. The materials lose their water molecules on heating and become anhydrous mostly around 300 °C. The desorption enthalpies due to heating were noted to decrease with increase of heating rate, and found low for Zeolite-Mordenite (334.5 J g-1) and high for Molecular Sieves-4A (1060 J g-1). Materials’ adsorption enthalpies were determined by subjecting them to single cycle tests comprising of heating, cooling and hydration processes in sequence. The desorption and adsorption enthalpies of a single cycle were found to vary with the material and temperature program used. To understand the desorption and adsorption kinetics better, the materials were also tested on X-ray photoelectron spectroscopy, Brunauer–Emmet–Teller, and thermal constants analysers respectively for their elemental composition, structural properties, and thermal conductivity. This paper concludes that many of the naturally available zeolites stand as potential candidates for a sustainable thermochemical energy storage and recovery.

Keywords

Main Subjects


References:
1. Hoeven, M. van der, Transition to Sustainable Buildings: Strategies and Opportunities to 2050, International Energy Agency (2013), ISBN:9264202412, 9789264202412.
2. Wang, K., Yan, T., Li, R.K., et al. "A review for Ca(OH)2/CaO thermochemical energy storage systems", J. Energy Storage, 50(February) (2022). https://doi.org/10.1016/j.est.2022.104612.
3. Zondag, H.A., Kalbasenka, A., Essen, M., et al., First Studies in Reactor Concepts for Thermochemical Storage, ECN Report (2008). https://api.semanticscholar.org/CorpusID:186496874.
4. Bonaccorsi, L., Calabrese, L., Alioto, S., et al. "Surface silanation of alumina-silica zeolites for adsorption heat pumping", Renew. Energy, 110, pp. 79-86 (2017). https://doi.org/10.1016/j.renene.2016.09.030.
5. Whiting, G., Grondin, D., Bennici, S., et al. "Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials", Sol. Energy Mater. Sol. Cells, 112, pp. 112-119 (2013). https://doi.org/10.1016/j.solmat.2013.01.020.
6. Aristov, Y.I. "Novel materials for adsorptive Heat pumping and storage: Screening and nanotailoring of sorption properties", J. Chem. Eng. Japan, 40(13), pp. 1242-1251 (2007). https://doi.org/10.1252/jcej.07WE228.
7. Henninger, S.K., Jeremias, F., Kummer, H., et al. "Novel sorption materials for solar heating and cooling", Energy Procedia, 30, pp. 279-288 (2012). https://doi.org/10.1016/j.egypro.2012.11.033.
8. Janchen, J., Ackermann, D., Weiler, E., et al. "Calorimetric investigation on zeolites, AlPO4's and CaCl2 impregnated attapulgite for thermochemical storage of heat", Thermochim. Acta, 434(1-2), pp. 37-41 (2005). https://doi.org/10.1016/j.tca.2005.01.009.
9. Barreneche, C., Fernandez, A.I., Cabeza, L.F., et al. "Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite", Appl. Energy, 137, pp. 726-730 (2015). https://doi.org/10.1016/j.apenergy.2014.09.025.
10. Padamurthy, A., Nandanavanam, J., and Rajagopalan, P. "Thermal stability evaluation of selected zeolites for sustainable thermochemical energy storage", Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1- 14 (2021). https://doi.org/10.1080/15567036.2021.1880502.
11. Lia, K., Bardy, D., Djebbar, R., et al. "Natural zeolites as host matrices for the development of low-cost and stable thermochemical energy storage materials", J. Porous Mater., 30, pp. 163-173 (2023). https://doi.org/10.1007/s10934-022-01277-3.
12. Karim Nejhad, M. and Aydin, D. "Synthesize and hygro-thermal performance analysis of novel APC-CaCl2 composite sorbent for lowgrade heat recovery, storage, and utilization", Energy Sources, Part A Recover. Util. Environ. Eff., 43(23), pp. 3011-3031 (2019). https://doi.org/10.1080/15567036.2019.1666187.
13. Padamurthy, A., Nandanavanam, J., and Rajagopalan, P. "Sustainable and open sorption system for lowtemperature heat storage applications", Int. J. Energy Res., 46, pp. 20004-20020 (2022). https://doi.org/10.1002/er.786714. Whiting, G.T., Grondin, D., Stosic, D., et al. "Zeolite- MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption", Sol. Energy Mater. Sol. Cells, 128, pp. 289-295 (2014).
https://doi.org/10.1016/j.solmat.2014.05.016.
15. Kubota, M., Matsumoto, S., and Matsuda, H. "Enhancement of hydration rate of LiOH by combining with mesoporous carbon for Low-temperature chemical heat storage", Appl. Therm. Eng., 150(December 2018), pp. 858-863 (2019).
https://doi.org/10.1016/j.applthermaleng.2019.01.049.
16. Jakubinek, M.B., Zhan, B.Z., and White, M.A. "Temperature-dependent thermal conductivity of powdered zeolite NaX", Microporous Mesoporous Mater., 103(1-3), pp. 108-112 (2007).
https://doi.org/10.1016/j.micromeso.2007.01.040.
17. Wang, L., Gandorfer, M., Selvam, T., et al. "Determination of faujasite-type zeolite thermal conductivity from measurements on porous composites by laser  ash method", Mater. Lett., 221, pp. 322-325 (2018).
https://doi.org/10.1016/j.matlet.2018.03.157.
18. Henao-Sierra, W., Romero-Saez, M., Gracia, F., et al. "Water vapor adsorption performance of Ag and Ni modified 5A zeolite", Microporous Mesoporous Mater., 265(February), pp. 250-257 (2018).
https://doi.org/10.1016/j.micromeso.2018.02.036.
19. Pino, L., Aristov, Y.I., Cacciola, G., et al. "Composite materials based on zeolite 4A for adsorption heat pumps", Adsorption, 3(1), pp. 33-40 (1996). https://doi.org/10.1007/BF01133005.
20. Liu, P. and Chen, G.F. "Characterization methods: Physical properties", In Porous Materials Processing and Applications, pp. 493-532 (2014). ISBN-13: 978-0124077881.
21. Kvalvag Schnell, S. "Molecular simulations of zeolites: Heterogeneous systems at equilibrium and nonequilibrium", (2013). ISBN: 978-94-6186-211-2. 
22. Guilleminot, J.J., Choisier, A., Chalfen, J.B., et al. "Heat transfer intensification in fixed bed adsorbers", Heat Recover. Syst. CHP, 13(4), pp. 297-300 (1993). https://doi.org/10.1016/0890-4332(93)90052-W
23. Gorgojo, P., Uriel, S., Tellez, C., et al. "Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation", Microporous Mesoporous Mater., 115, pp. 85-92 (2008).
https://doi.org/10.1016/j.micromeso.2007.11.046.
24. Singh, D.N. and Kolay, P.K. "Simulation of ash-water interaction and its influence on ash characteristics", Prog. Energy Combust. Sci., 28, pp. 267-299 (2002). https://doi.org/10.1016/S0360-1285(01)00018-1
25. Jha, B. and Singh, D.N. "A review on synthesis, characterization and industrial applications of  yash zeolites", J. Mater. Educ., 33, pp. 65-132 (2011). https://doi.org/10.1002/chin.201225227
26. Mintova, S., Verified Syntheses of Zeolitic Materials, Third Revised Edition (2016). ISBN: 978-0-692-68539-6.
27. Breck, D.W. "Recent advances in zeolite science", In Advances in Chemistry, pp. 1-19 (1974). https://doi.org/10.1021/ba-1971-0101.ch001.
28. Wang, X., Plackowski, C.A., and Nguyen, A.V. "X-ray photoelectron spectroscopic investigation into the surface effects of sulphuric acid treated natural zeolite", Powder Technol., 295, pp. 27-34 (2016).
https://doi.org/10.1016/j.powtec.2016.03.025.
29. Stocker, M. "X-Ray photoelectron spectroscopy on zeolites and related materials", Microporous Mater., 6(5-6), pp. 235-257 (1996). https://doi.org/10.1016/0927-6513(96)00034-X.
30. Francoise, R., Jean, R., and Kenneth, S., Adsorption by Powder and Porous Solids, Principles, Methodology and Applications, Acadamic Press (1999). https://doi.org/10.1016/B978-0-12-598920-6. X5000-3
31. Vyas, R.K. and Kumar, S. "Estimation of temperature-dependent thermal conductivity of a packed bed of 13X molecular sieves", Ind. Eng. Chem. Res., 34(11), pp. 4058-4062 (1995).
https://doi.org/10.1021/ie00038a047.
32. Griesinger, A., Spindler, K., and Hahne, E. "Measurements and theoretical modelling of the effective thermal conductivity of zeolites", Int. J. Heat Mass Transf., 42(23), pp. 4363-4374 (1999).
https://doi.org/10.1016/S0017-9310(99)00096-4.
33. Schnell, S.K. and Vlugt, T.J.H. "Thermal conductivity in zeolites studied by non-equilibrium molecular dynamics simulations", Int. J. Thermophys., 34(7), pp. 1197-1213 (2013).
https://doi.org/10.1007/s10765-013-1467-2.
34. Murashov, V.V. "Thermal conductivity of model zeolites: molecular dynamics simulation study", J. Phys. Condens. Matter-IOPscience, 11(5), pp. 1261-1271 (1999). https://doi.org/10.1088/0953-8984/11/5/013
35. Fraenkel, D., Andersen, P.C., Cooper, G., et al. "A modified thermogravimetric analysis apparatus of improved performance", Ind. Eng. Chem. Reserarch, 41, pp. 1885-1891 (2002).https://doi.org/10.1021/ie010565j
36. Aristov, Y.I. "Challenging offers of material science for adsorption heat transformation: A review", Appl. Therm. Eng., 50(2), pp. 1610-1618 (2013). https://doi.org/10.1016/j.applthermaleng.2011.09.003.