References:
1. Rao, R.V., Savsani, V.J., and Balic, J. "Teachinglearning-based optimization algorithm for unconstrained and constrained actual-parameter optimization problems", Engineering Optimization, 44(12), pp. 1447-1462 (2012). DOI: 10.1080/0305215X.2011.652103.
2. Schmidt-Hieber, A.J. "Nonparametric regression using deep neural networks with ReLU activation function", Annals of Statistics, 48(4), pp. 1875-1897 (2020). DOI: 10.1214/19-AOS1875.
3. Gorgoglione, A., Gioia, A., and Iacobellis, V. "A framework for assessing modeling performance and effects of rainfall-catchment-drainage characteristics on nutrient urban runoff in poorly gauged watersheds", Sustainability, 11(18), pp. 4933-4945 (2020). DOI: 10.3390/su11184933.
4. Niu, D. and Dai, S. "A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis", Energies, 10(3), pp. 408-428 (2017). DOI: 10.3390/en10030408.
5. Wax, M. and Adler, A. "Detection of the number of signals by signal subspace matching. ieee trans", Signal Process, 69(1), pp. 973-985 (2021). DOI: 10.1109/TSP.2021.3053495.
6. Yadav, S., Wajid, M., and Usman, M., Support Vector Machine-Based Direction of Arrival Estimation with Uniform Linear Array, In book: Advances in Computational Intelligence Techniques Publisher: Springer, pp. 253-264 (2020). DOI: 10.1007/978-981-15-2620-6.
7. Choo, Y., Park, Y., and Seong, W. "Detection of direction-of-arrival in time domain using compressive time delay estimation with single and multiple measurements", Sensors (Basel), 20(18), pp. 5431-5442 (2020). DOI: 10.3390/s20185431.
8. Park, C. and Lee, D. "Classification of respiratory states using spectrogram with convolutional neural network", Applied Sciences, 12(4), pp. 1895-1906 (2022). DOI: 10.3390/app12041895.
9. Ketkar, N. and Moolayil, J., Convolutional Neural Networks. in Deep Learning With Python, Apress: Berkeley, CA, USA. pp. 197-242 (2021). DOI: 10.1007/978- 1-4842-5364-9 6.
10. Wei, Y. and Jiang, Z. "Estimating parameters of structural models using neural networks", USC Marshall School of Business Research Paper, 22(1), pp. 1-46 (2022). DOI: 10.2139/ssrn.3496098.
11. Wood, A., Wood, R., and Charnley, M. "Throughthe- wall radar detection using machine learning", Results in Applied Mathematics, 7(1), pp. 100106-100114 (2020). DOI: 10.1016/j.rinam.2020.100106.
12. Gregorczyk, M., Z_ orawski, P., Nowakowski, P., et al. "Sniffing detection based on network traffic probing and machine learning", In IEEE Access, 8(1), pp. 149255-149269 (2020). DOI: 10.1109/ACCESS.2020.3016076.
13. Cuntz, H. "Forest of synthetic pyramidal dendrites grown using cajal's laws of neuronal branching", PLoS Computational Biology, 6(8), ev06.i08-17. (2010). DOI: 10.1371/image.pcbi.v06.i08.
14. Bain, A., Mind and Body. the Theories of Their Relation, New York: d. Appleton and Company, James, the principles of psychology, New York: H. Holt and Company. (1873). URL: https://archive.org/details/ mindbodytheories00bain.
15. Brush, S.G. "History of the lenz-ising model", Reviews of Modern Physics, 39(4), pp. 883-893 (1967). DOI: 10.1103/RevModPhys.39.883.
16. Sherrington, C.S. "Experiments in examination of the peripheral distribution of the fibers of the posterior roots of some spinal nerves", Proceedings of the Royal Society of London, 190(1), pp. 45-186 (1989). DOI: 10.1098/rstb.1898.0002.
17. Li, Y., Lan, C., Xing, J., et al. "Online human action detection using joint classification-regression recurrent neural networks", In: 14th European Conference on Computer Vision - ECCV, Part VII, Springer (2017). DOI: 10.48550/arXiv.1604.05633.
18. Lahmiri, S. "Wavelet low- and high-frequency components as features for predicting stock prices with back propagation neural networks", Journal of King Saud University - Computer and Information Sciences, 26(2), pp. 218-227 (2014). DOI: 10.1016/j.jksuci.2013.12.001.
19. Ticknor, J.L. "A bayesian regularized artificial neural network for stock market forecasting", Expert Systems with Applications, 40(14), pp. 5501-5506 (2013). DOI: 10.1016/j.eswa.2013.04.013.
20. Kara, Y., Boyacioglu, M.A., and Baykan, O.K. "Predicting the direction of stock price index movement using artificial neural networks and support vector machines: The sample of the istanbul stock exchange", Journal of Expert Systems with Applications, 38(5), pp. 5311-5319 (2011). DOI: 10.1016/j.eswa.2010.10.027.
21. Zhang, H.M., Wang, Z.B., Wu, Z.H., et al. "Realtime through-the-wall radar imaging under unknown wall characteristics using the least-squares support vector machines based method", Journal of Applied Remote Sensing, 10(2), pp. 020501-0205011 (2021).DOI: 10.1117/1.JRS.10.020501.
22. Kose, U. and Arslan, A. "Forecasting chaotic time series via anfis supported by vortex optimization algorithm: Applications on electroencephalogram time series", Arab J Sci Eng., 42(1), pp. 3103-3114 (2017). DOI: 10.1007/s13369-016-2279-z.
23. Ma, X., Jin, Y., and Dong, Q. "A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting", Applied Soft Computing, 54(1), pp. 296-312 (2017). DOI: 10.1016/j.asoc.2017.01.033.
24. Zhu, W., Lan, C., Xing, J., et al. "Co-occurrence feature learning for skeleton based action recognition using regularized deep lstm networks", AAAI Conference on Artificial Intelligence (2016) DOI: 10.48550/arXiv.1603.07772.
25. Zhang, S., Liu, X., and Xiao, J. "On geometric features for skeleton-based action recognition using multilayer lstm networks", 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (2017). DOI: 10.1109/TMM.2018.2802648.
26. Qiu, X., Ren, Y., Suganthan, P.N., et al. "Empirical mode decomposition based ensemble deep learning for load demand time series forecasting", Applied Soft Computing, 54(1), pp. 246-255 (2017). DOI: 10.1016/j.asoc.2017.01.015.
27. Tarigan, J., Diedan, R., and Suryana, Y. "Plate recognition using backpropagation neural network and genetic algorithm", Procedia Computer Science, 116(1), pp. 365-372 (2017). DOI: 10.1016/j.procs.2017.10.068.
28. Hannun, A.Y., Case, C., Casper, J., et al. "Deep speech: Scaling up end-to-end speech recognition", ArXiv. (2014). DOI: 10.48550/arXiv.1412.5567.
29. Sak, H., Senior, A.W., Rao, K., et al. "Learning acoustic frame labeling for speech recognition with recurrent neural networks", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015). DOI: 10.1109/ICASSP.2015.7178778.