References:
1. Katz, J., Automotive Aerodynamics, John Wiley & Sons, Ltd. (2016).
2. Wang, Y., Wu, C., Tan, G., et al. "Reduction in the aerodynamic drag around a generic vehicle by using a non-smooth surface", Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 231(1), pp. 130-144 (2017). https://doi.org/10.1177/0954407016636970.
3. Morel, T. "Effect of base slant on the flow pattern and drag of three-dimensional bodies with blunt ends.", Aerodyn. Drag Mech. Bluff Bodies Road Veh., Springer, Boston, MA, pp. 191-226 (1978). https://doi.org/10.1007/978-1-4684-8434-2 8.
4. Ahmed, S.R., Ramm, G., and Faltin, G. "Some salient features of the time-averaged ground vehicle wake", SAE Tech. Pap., 93, Section 2: 840222-840402, pp. 473-503 (1984). https://doi.org/10.4271/840300.
5. Dobrev, I. and Massouh, F. "Investigation of relationship between drag and lift coefficients for a generic car model", BULTRANS-2014, pp. 171-174 (2014).
6. Sumida, M. and Hayakawa, K. "Aerodynamic forces acting on Ahmed-type vehicles under fluctuating headwind conditions", J. Appl. Fluid Mech., 12(5), pp. 1563-1574 (2019). https://doi.org/10.29252/JAFM.12.05.29774.
7. Meile, W., Brenn, G., Reppenhagen, A., et al. "Experiments and numerical simulations on the aerodynamics of the ahmed body", CFD Lett., 3(1), pp. 32-38 (2011). https://doi.org/https://doi.org/10.1017/ CBO9781107415324.004.
8. Bayraktar, I., Landman, D., and Baysal, O., Experimental and Computational Investigation of Ahmed Body for Ground Vehicle Aerodynamics, 110, Section 2: SAE technical papers, pp. 321-331 (2001). https://doi.org/10.4271/2001-01-2742.
9. Strachan, R.K., Knowles, K., and Lawson, N.J. "The vortex structure behind an Ahmed reference model in the presence of a moving ground plane", Exp. Fluids, 42(5), pp. 659-669 (2007). https://doi.org/10.1007/s00348-007-0270-x.
10. Gulyas, A., Bodor, A., Regert, T., et al. "PIV measurement of the flow past a generic car body with wheels at LES applicable Reynolds number", Int. J. Heat Fluid Flow, 43, pp. 220-232 (2013). https://doi.org/10.1016/j.ijheat fluid flow.2013.05.012.
11. Huminic, A. and Huminic, G. "Aerodynamic study of a generic car model with wheels and underbody diffuser", Int. J. Automot. Technol., 18(3), pp. 397- 404 (2017). https://doi.org/10.1007/s12239-017-0040-6.
12. Wang, S., Avadiar, T., Thompson, M.C., et al. "Effect of moving ground on the aerodynamics of a generic automotive model: The DrivAer-Estate", J. Wind Eng. Ind. Aerodyn., 195, p. 104000 (2019). https://doi.org/10.1007/s40430-021-02850-8.
13. Krajnovic, S. and Davidson, L. "Influence of floor motions in wind tunnels on the aerodynamics of road vehicles", J. Wind Eng. Ind. Aerodyn., 93(9), pp. 677- 696 (2005). https://doi.org/10.1016/j.jweia.2020.104411.
14. Krajnovic, S., Sarmast, S., and Basara, B. "Numerical investigation of the flow around a simplified wheel in a wheelhouse", J. Fluids Eng. Trans. ASME, 133(11), pp. 1-12 (2011). https://doi.org/10.47176/jafm.15.01.32832.
15. Zhou, H., Qin, R., Wang, G., et al. "Comparative analysis of the aerodynamic behavior on Ahmed body mounted with different wheel configurations", Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 238(1), pp. 128-146 (2024). https://doi.org/10.3390/ fluids7020052.
16. Aljure, D., Lehmkuhl, O., Favre, F., et al. "On the IBM approximation for the wheel aerodynamic simulation", In Proceedings of the First International Conference in Numerical and Experimental Aerodynamics of Road Vehicles and Trains (Aerovehicles 1), Bordeaux, France, pp. 23-25 (2014). https://doi.org/10.2514/6.2009-4034.
17. Regert, T. and Lajos, T. "Description of flow field in the wheelhouses of cars", Int. J. Heat Fluid Flow, 28(4), pp. 616-629 (2007).
18. Menter, F. "Improved two-equation k-omega turbulence models for aerodynamic flows", NASA Tech. Memo., 103978, pp. 1-31 (1992).https://doi.org/10.1016/j.comp fluid.2017.01.005.
19. Siddiqui, N.A. and Chaab, M.A. "A simple passive device for the drag reduction of an Ahmed obdy", J. Appl. Fluid Mech., 14(1), pp. 147-164 (2020). https://doi.org/10.47176/jafm.14.01.31791.
20. Guilmineau, E., Deng, G.B., Leroyer, A., et al. "Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body", Comput. Fluids, 176, pp. 302-319 (2018). https://doi.org/10.1016/j.jweia.2020.104330.
21. Zhang, C., Bounds, C.P., Foster, L., et al. "Turbulence modeling effects on the CFD predictions of flow over a detailed full-scale sedan vehicle", Fluids, 4(3), pp. 1-28 (2019).
22. Mohammadikalakoo, B., Schito, P., and Mani, M. "Passive flow control on Ahmed body by rear linking tunnels", J. Wind Eng. Ind. Aerodyn., 205, pp. 1-16 (2020).
23. Davidson, L. "Assessment of turbulence models for flow simulation around the Ahmed body", Annu. Rev. Fluid Mech., 32(1), pp. 1-32 (2016). https://doi.org/10.1115/1.1989372.
24. Lienhart, H. and Becker, S., Flow and Turbulence Structure in the Wake of a Simplified Car Model, SAE transactions, pp. 785-796 (2003).
25. Avadiar, T., Thompson, M.C., Sheridan, J., et al. "Characterisation of the wake of the DrivAer estate vehicle", J. Wind Eng. Ind. Aerodyn., 177, pp. 242- 259 (2018). https://doi.org/10.1007/BF02380836.
26. Tunay, T., Firat, E., and Sahin, B. "Experimental investigation of the flow around a simplified ground vehicle under effects of the steady crosswind", Int. J. Heat Fluid Flow, 71, pp. 137-152 (2018). https://doi.org/10.4271/2010-01-0119.
27. Krajnovic, S. and Davidson, L. "Flow around a simplified car, part 2: Understanding the flow", J. Fluids Eng. Trans. ASME, 127(5), pp. 919-928 (2005).
28. Kang, S.-O., Jun, S.-O., Park, H. H.-I., et al. "Influence of rotating wheel and moving ground condition to aerodynamic performance of 3-dimensional automobile configuration", Trans. Korean Soc. Automot. Eng., 18(5), pp. 100-107 (2010).
29. Jeong, J. and Hussain, F. "On the identification of vortex", J. Fluid Mech., 285, pp. 69-94 (1995).