1. Elvira, K.S., Gielen, F., Tsai, S.S.H., et al. "Materials and methods for droplet microfluidic device fabrication", Lab Chip, 22(5), pp. 859-875 (2022). https://doi.org/10.1039/D1LC00836F.
2. Paramanantham, S.S.S., Nagulapati, V.M., and Lim, H. "Numerical investigation of the influence of microchannel geometry on the droplet generation process", Journal of Applied Fluid Mechanics, 15(5), pp. 1291-1305 (2022). https://doi.org/10.47176/JAFM.15.05.1126.
3. Roshchin, D.E. and Patlazhan, S.A. "Mixing inside droplet co-flowing with Newtonian and shear-thinning fluids in microchannel", International Journal of Multiphase Flow, 158, p. 104288 (2023).
https://doi.org/10.1016/j.ijmultiphase flow.2022.104288.
4. Mathies, R.A. and Huang, X.C. "Capillary array electrophoresis: an approach to high-speed, highthroughput DNA sequencing", Nature, 359(6391), pp. 167-169 (1992). https://doi.org/10.1038/359167a0.
5. Banik, B.L., Fattahi, P., and Brown, J.L. "Polymeric nanoparticles: the future of nanomedicine", WIREs Nanomedicine and Nanobiotechnology, 8(2), pp. 271- 299 (2016). https://doi.org/10.1002/wnan.1364.
6. Yadav, H.K. "Different techniques for preparation pf polymeric nanoparticles-A", Asian Journal of Pharmaceutical and Clinical Research, 5(3), pp. 16-23 (2012). https://doi.org/10.1214/j.ajpcr.2012.0974-2441.
7. Rao, J.P. and Geckeler, K.E. "Polymer nanoparticles: Preparation techniques and size-control parameters", Prog Polym Sci, 36(7), pp. 887-913 (2011). https://doi.org/10.1016/j.progpolymsci.2011.01.001.
8. Galindo-Rodriguez, S., Allemann, E., Fessi, H., et al. "Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods", Pharm Res, 21(8), pp. 1428-1439 (2004).https://doi.org/10.1023/B:PHAM.0000036917.75634.be.
9. Jahn, A., Vreeland, W.N., DeVoe, D.L., et al. "Microfluidic directed formation of liposomes of controlled size", Langmuir, 23(11), pp. 6289-6293 (2007). https://doi.org/10.1021/la070051a.
10. Stone, H.A., Stroock, A.D., and Ajdari, A. "Engineering flows in small devices: Microfluidics toward a lab-on-a-chip", Annu Rev Fluid Mech, 36(1), pp. 381-411 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.122124.
11. Koh, C.G., Zhang, X., Liu, S., et al. "Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing", J Control Release, 141(1), pp. 62-69 (2010). https://doi.org/10.1016/j.jconrel.2009.08.019.
12. Belliveau, N.M., Huft, J., Lin, P.J., et al. "Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA", Mol Ther Nucleic Acids, 1(8), p. e37 (2012). https://doi.org/10.1038/mtna.2012.28.
13. Chen, S., Zhang, H., Shi, X., et al. "Microfluidic generation of chitosan/CpG oligodeoxynucleotide nanoparticles with enhanced cellular uptake and immunostimulatory properties", Lab Chip, 14(11), pp. 1842-1849 (2014). https://doi.org/10.1039/C4LC00015C.
14. Karnik, R., Gu, F., Basto, P., et al. "Microfluidic platform for controlled synthesis of polymeric nanoparticles", Nano Lett, 8(9), pp. 2906-2912 (2008). https://doi.org/10.1021/nl801736q.
15. Kolishetti, N., Dhar, S., Valencia, P.M., et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy", Proceedings of the National Academy of Sciences, 107(42), pp. 17939-17944 (2010). https://doi.org/10.1073/pnas.1011368107.
16. Valencia, P.M., Basto, P.A., Zhang, L., et al. "Singlestep assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by micro fluidic rapid mixing", ACS Nano, 4(3), pp. 1671-1679 (2010). https://doi.org/10.1021/nn901433u.
17. Raji, F. and Rahbar-Kelishami, A. "Evaluation of biocompatible aqueous two-phase systems with the double interface for the recovery of biomolecules", Colloids Surf A Physicochem Eng Asp, 624(May), 126823 (2021). https://doi.org/10.1016/j.colsurfa.2021.126823.
18. Khatibi, M., Ashrafizadeh, S.N., and Sadeghi, A. "Augmentation of the reverse electrodialysis power generation in soft nanochannels via tailoring the soft layer properties", Electrochim Acta, 395, p. 139221 (2021). https://doi.org/10.1016/j.electacta.2021.139221.
19. Raji, F. and Rahbar-kelishami, A. "Chemical engineering and processing - process intensification evaluation of mass transfer rate in aqueous two-phase systems: Effect of microchannel width for bovine serum albumin extraction", Chemical Engineering and Processing - Process Intensification, 163(February), p. 108370 (2021). https://doi.org/10.1016/j.cep.2021.108370.
20. Khatibi, M., Sadeghi, A., and Ashrafizadeh, S.N. "Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces", Physical Chemistry Chemical Physics, 23(3), pp. 2211-2221 (2021). https://doi.org/10.1039/D0CP05974A.
21. Raji, F., Shayesteh, H., and Rahbar-Kelishami, A. "YY microfluidic polymer/salt aqueous two-phase system for optimization of dye extraction: Evaluation of channel geometry", Separation Science and Technology, (Philadelphia), 57(15), pp. 2471-2481 (2022). https://doi.org/10.1080/01496395.2022.2059677.
22. Zhang, S.-B., Ge, X.-H., Geng, Y.-H., et al. "From core-shell to Janus: Microfluidic preparation and morphology transition of gas/oil/water emulsions", Chem Eng Sci, 172, pp. 100-106 (2017). https://doi.org/10.1016/j.ces.2017.06.031.
23. Ghasemzade Bariki, S., Salman, M., and Ghojavand, M. "Computational fluid dynamic study of polycaprolactone nanoparticles precipitation in a co-flow capillary micro-tube", Canadian Journal of Chemical Engineering, 101(8), pp. 4746-4761 (2022). https://doi.org/10.1002/cjce.24768.
24. Bariki, S.G. and Movahedirad, S. "A flow map for core/shell microdroplet formation in the co-flow Microchannel using ternary phase-field numerical model", Sci Rep, 12(1), p. 22010 (2022). https://doi.org/10.1038/s41598-022-26648-3.
25. Zhang, Y., Wang, D., Bai, X., et al. "Microfluidic preparation of magnetic chitosan microsphere and its adsorption towards Congo red", Journal of Polymer Research, 30(2), p. 77 (2023). https://doi.org/10.1007/s10965-022-03387-7.
26. Zhang, Y., Wang, Y., Du, G., et al. "A surfactant-free droplet based microfluidic technique for the fabrication of polymeric microspheres", Mater Today Commun, 33, p. 104389 (2022). https://doi.org/10.1016/j.mtcomm.2022.104389.
27. Ekanem, E.E., Zhang, Z., and Vladisavljevic, G.T. "Facile production of biodegradable bipolymer patchy and patchy janus particles with controlled morphology by microfluidic routes", Langmuir, 33(34), pp. 8476- 8482 (2017). https://doi.org/10.1021/acs.langmuir.7b02506.
28. Lince, F., Marchisio, D.L., and Barresi, A.A. "Strategies to control the particle size distribution of poly-"-caprolactone nanoparticles for pharmaceutical applications", J Colloid Interface Sci, 322(2), pp. 505-515 (2008). https://doi.org/10.1016/j.jcis.2008.03.033.
29. Mohanraj, V.J. and Chen, Y. "Nanoparticles - a review", Tropical Journal of Pharmaceutical Research, 5(1), pp. 561-573 (2007). https://doi.org/10.4314/tjpr.v5i1.14634.
30. Capretto, L., Carugo, D., Mazzitelli, S., et al. "Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications", Adv Drug Deliv Rev, 65(11-12), pp. 1496-1532 (2013). https://doi.org/10.4314/tjpr.v5i1.14634.
31. Ali, H.S.M., York, P., and Blagden, N. "Preparation of hydrocortisone nanosuspension through a bottomup nanoprecipitation technique using microfluidic reactors", Int J Pharm, 375(1-2), pp. 107-113 (2009). https://doi.org/10.1016/j.ijpharm.2009.03.029.
32. Su, Y.A., Kim, H., Kovenklioglu, S., et al. "Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization", 180, pp. 2625-2629 (2007). https://doi.org/10.1016/j.jssc.2007.06.033.
33. Genot, V., Desportes, S., Croushore, C., et al. "Synthesis of organic nanoparticles in a 3D flow focusing microreactor", Chemical Engineering Journal, 161(1- 2), pp. 234-239 (2010). https://doi.org/10.1016/j.cej.2010.04.029.
34. Othman, R., Vladisavljevic, G.T., Bandulasena, H.C.H., et al. "Production of polymeric nanoparticles by micromixing in a co-
flow micro uidic glass capillary device", Chem. Eng. J., 280, p. 316 (2015).https://doi.org/10.1016/j.cej.2015.05.083.
35. Xie, H., She, Z.-G., Wang, S., et al. "One-step fabrication of polymeric Janus nanoparticles for drug delivery", Langmuir, 28(9), pp. 4459-4463 (2012). https://doi.org/10.1021/la2042185.
36. Lone, S., Kim, S.H., Nam, S.W., et al. "Microfluidic synthesis of Janus particles by UV-directed phase separation", Chem. Commun., 47(9), pp. 2634-2636 (2011). https://doi.org/10.1039/C0CC04517A.
37. Heshmatnezhad, F. and Solaimany Nazar, A.R. "Onchip controlled synthesis of polycaprolactone nanoparticles using continuous- flow microfluidic devices", J Flow Chem, 10(3), pp. 533-543 (2020). https://doi.org/10.1007/s41981-020-00092-8.
38. Osher, S. and Sethian, J.A. "Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations", J Comput Phys, 79(1), pp. 12-49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2.
39. Bashir, S., Rees, J.M., and Zimmerman, W.B. "Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method", International Journal of Multiphase Flow, 60, pp. 40-49 (2014).
https://doi.org/10.1016/j.ijmultiphase flow.2013.11.012.
40. Khatibi, M., Ashrafizadeh, S.N., and Sadeghi, A. "Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification", Anal Chim Acta, 1122, pp. 48-60 (2020). https://doi.org/10.1016/j.aca.2020.05.011.
41. Seifollahi, Z. and Ashrafizadeh, S.N. "Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel", Chem Eng Sci, 261, p. 117986 (2022). https://doi.org/10.1016/j.ces.2022.117986.
42. Seifollahi, Z. and Ashrafizadeh, S.N. "Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels", Colloids Surf B Biointerfaces, 216, p. 112545 (2022). https://doi.org/10.1016/j.colsurfb.2022.112545.
43. Dartoomi, H., Khatibi, M., and Ashrafizadeh, S.N. "Enhanced ionic current rectification through innovative integration of polyelectrolyte bilayers and chargedwall smart nanochannels", Anal Chem, 95(2), pp. 1522-1531 (2023). https://doi.org/10.1021/acs.analchem.2c04559.
44. Khatibi, M., Ashrafizadeh, S.N., and Sadeghi, A. "Augmentation of the reverse electrodialysis power generation in soft nanochannels via tailoring the soft layer properties", Electrochim Acta, 395, p. 139221 (2021). https://doi.org/10.1016/j.electacta.2021.139221.
45. Ayoubi, S., Khatibi, M., and Ashrafizadeh, S.N. "A variational approach applied to reduce fouling with the electroosmotic flow in porous-wall microchannels", Micro fluid Nanofluidics, 25(12), p. 101 (2021). https://doi.org/10.1007/s10404-021-02501-3.
46. Karimzadeh, M., Khatibi, M., and Ashrafizadeh, S.N. "Impacts of the temperature-dependent properties on ion transport behavior in soft nanochannels", International Communications in Heat and Mass Transfer, 129, p. 105728 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105728.
47. Ganjizade, A., Sadeghi, A., and Ashrafizadeh, S.N. "Effect of ion partitioning on electrostatics of soft particles with volumetrically charged inner core coated with pH-regulated polyelectrolyte layer", Colloids Surf B Biointerfaces, 170, pp. 129-135 (2018).https://doi.org/10.1016/j.colsurfb.2018.05.053.
48. Ganjizade, A., Ashrafizadeh, S.N., and Sadeghi, A. "Effect of ion partitioning on electrophoresis of soft particles", Colloid Polym Sci, 297(2), pp. 191-200 (2019). https://doi.org/10.1007/s00396-018-04467-1.
49. Seifollahi, Z. and Ashrafizadeh, S.N. "Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels", Colloids Surf B Biointerfaces, 216, p. 112545 (2022). https://doi.org/10.1016/j.colsurfb.2022.112545.
50. Seifollahi, Z. and Ashrafizadeh, S.N. "Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel", Chem Eng Sci, 261, p. 117986 (2022). https://doi.org/10.1016/j.ces.2022.117986.
51. Li, X. Bin, Li, F.C., Yang, J.C., Kinoshita, et al. "Study on the mechanism of droplet formation in Tjunction microchannel", Chem Eng Sci, 69(1), pp. 340-351 (2012). https://doi.org/10.1016/j.ces.2011.10.048.