Effects of the microchannel shape upon droplet formations during synthesis of nanoparticles

Document Type : Article

Authors

Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.

Abstract

Advances in nanotechnology has made it possible to produce minimal tools and equipment that can be used to control tiny volumes of fluids. Such systems, currently at the center of attention of scientists in various fields, are referred to as microfluidic systems. also, the ability to synthesize nanoparticles with precise control over particle’s form and size is crucial. The major goal of this research was to see if the nozzle-focused microchannels could have been used to synthesize the Polycaprolactone (PCL) polymer nanoparticles through the COMSOL Multiphysics 5.4 software medium. In this study, the static velocity and pressure of the droplet after leaving the nozzle and entering the main channel, as well as the size, shape, distribution, and weight of the droplet in terms of the time step, were understudied. It was revealed the channel design was such that, the droplets could have maintained their stable shape at the end of it. Finally, it was shown that, the droplet possessed a dual functionality of place and time in terms of the size and weight distribution after a time step of 0.00305 seconds. The maximum drop saturation mass was formed, and the droplet diameter size displayed a plateau after 0.01 seconds.

Keywords

Main Subjects


References:
1. Elvira, K.S., Gielen, F., Tsai, S.S.H., et al. "Materials and methods for droplet microfluidic device fabrication", Lab Chip, 22(5), pp. 859-875 (2022). https://doi.org/10.1039/D1LC00836F.
2. Paramanantham, S.S.S., Nagulapati, V.M., and Lim, H. "Numerical investigation of the influence of microchannel geometry on the droplet generation process", Journal of Applied Fluid Mechanics, 15(5), pp. 1291-1305 (2022). https://doi.org/10.47176/JAFM.15.05.1126.
3. Roshchin, D.E. and Patlazhan, S.A. "Mixing inside droplet co-flowing with Newtonian and shear-thinning fluids in microchannel", International Journal of Multiphase Flow, 158, p. 104288 (2023). https://doi.org/10.1016/j.ijmultiphase flow.2022.104288.
4. Mathies, R.A. and Huang, X.C. "Capillary array electrophoresis: an approach to high-speed, highthroughput DNA sequencing", Nature, 359(6391), pp. 167-169 (1992). https://doi.org/10.1038/359167a0.
5. Banik, B.L., Fattahi, P., and Brown, J.L. "Polymeric nanoparticles: the future of nanomedicine", WIREs Nanomedicine and Nanobiotechnology, 8(2), pp. 271- 299 (2016). https://doi.org/10.1002/wnan.1364.
6. Yadav, H.K. "Different techniques for preparation pf polymeric nanoparticles-A", Asian Journal of Pharmaceutical and Clinical Research, 5(3), pp. 16-23 (2012). https://doi.org/10.1214/j.ajpcr.2012.0974-2441.
7. Rao, J.P. and Geckeler, K.E. "Polymer nanoparticles: Preparation techniques and size-control parameters", Prog Polym Sci, 36(7), pp. 887-913 (2011). https://doi.org/10.1016/j.progpolymsci.2011.01.001.
8. Galindo-Rodriguez, S., Allemann, E., Fessi, H., et al. "Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods", Pharm Res, 21(8), pp. 1428-1439 (2004).https://doi.org/10.1023/B:PHAM.0000036917.75634.be.
9. Jahn, A., Vreeland, W.N., DeVoe, D.L., et al. "Microfluidic directed formation of liposomes of controlled size", Langmuir, 23(11), pp. 6289-6293 (2007). https://doi.org/10.1021/la070051a.
10. Stone, H.A., Stroock, A.D., and Ajdari, A. "Engineering flows in small devices: Microfluidics toward a lab-on-a-chip", Annu Rev Fluid Mech, 36(1), pp. 381-411 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.122124.
11. Koh, C.G., Zhang, X., Liu, S., et al. "Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing", J Control Release, 141(1), pp. 62-69 (2010). https://doi.org/10.1016/j.jconrel.2009.08.019.
12. Belliveau, N.M., Huft, J., Lin, P.J., et al. "Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA", Mol Ther Nucleic Acids, 1(8), p. e37 (2012). https://doi.org/10.1038/mtna.2012.28.
13. Chen, S., Zhang, H., Shi, X., et al. "Microfluidic generation of chitosan/CpG oligodeoxynucleotide nanoparticles with enhanced cellular uptake and immunostimulatory properties", Lab Chip, 14(11), pp. 1842-1849 (2014). https://doi.org/10.1039/C4LC00015C.
14. Karnik, R., Gu, F., Basto, P., et al. "Microfluidic platform for controlled synthesis of polymeric nanoparticles", Nano Lett, 8(9), pp. 2906-2912 (2008). https://doi.org/10.1021/nl801736q.
15. Kolishetti, N., Dhar, S., Valencia, P.M., et al.  Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy", Proceedings of the National Academy of Sciences, 107(42), pp. 17939-17944 (2010). https://doi.org/10.1073/pnas.1011368107.
16. Valencia, P.M., Basto, P.A., Zhang, L., et al. "Singlestep assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by micro fluidic rapid mixing", ACS Nano, 4(3), pp. 1671-1679 (2010). https://doi.org/10.1021/nn901433u.
17. Raji, F. and Rahbar-Kelishami, A. "Evaluation of biocompatible aqueous two-phase systems with the double interface for the recovery of biomolecules", Colloids Surf A Physicochem Eng Asp, 624(May), 126823 (2021). https://doi.org/10.1016/j.colsurfa.2021.126823.
18. Khatibi, M., Ashrafizadeh, S.N., and Sadeghi, A. "Augmentation of the reverse electrodialysis power generation in soft nanochannels via tailoring the soft layer properties", Electrochim Acta, 395, p. 139221 (2021). https://doi.org/10.1016/j.electacta.2021.139221.
19. Raji, F. and Rahbar-kelishami, A. "Chemical engineering and processing - process intensification evaluation of mass transfer rate in aqueous two-phase systems: Effect of microchannel width for bovine serum albumin extraction", Chemical Engineering and Processing - Process Intensification, 163(February), p. 108370 (2021). https://doi.org/10.1016/j.cep.2021.108370.
20. Khatibi, M., Sadeghi, A., and Ashrafizadeh, S.N. "Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces", Physical Chemistry Chemical Physics, 23(3), pp. 2211-2221 (2021). https://doi.org/10.1039/D0CP05974A.
21. Raji, F., Shayesteh, H., and Rahbar-Kelishami, A. "YY microfluidic polymer/salt aqueous two-phase system for optimization of dye extraction: Evaluation of channel geometry", Separation Science and Technology, (Philadelphia), 57(15), pp. 2471-2481 (2022). https://doi.org/10.1080/01496395.2022.2059677.
22. Zhang, S.-B., Ge, X.-H., Geng, Y.-H., et al. "From core-shell to Janus: Microfluidic preparation and morphology transition of gas/oil/water emulsions", Chem Eng Sci, 172, pp. 100-106 (2017). https://doi.org/10.1016/j.ces.2017.06.031.
23. Ghasemzade Bariki, S., Salman, M., and Ghojavand, M. "Computational  fluid dynamic study of polycaprolactone nanoparticles precipitation in a co-flow capillary micro-tube", Canadian Journal of Chemical Engineering, 101(8), pp. 4746-4761 (2022). https://doi.org/10.1002/cjce.24768.
24. Bariki, S.G. and Movahedirad, S. "A  flow map for core/shell microdroplet formation in the co-flow Microchannel using ternary phase-field numerical model", Sci Rep, 12(1), p. 22010 (2022). https://doi.org/10.1038/s41598-022-26648-3.
25. Zhang, Y., Wang, D., Bai, X., et al. "Microfluidic preparation of magnetic chitosan microsphere and its adsorption towards Congo red", Journal of Polymer Research, 30(2), p. 77 (2023). https://doi.org/10.1007/s10965-022-03387-7.
26. Zhang, Y., Wang, Y., Du, G., et al. "A surfactant-free droplet based microfluidic technique for the fabrication of polymeric microspheres", Mater Today Commun, 33, p. 104389 (2022). https://doi.org/10.1016/j.mtcomm.2022.104389.
27. Ekanem, E.E., Zhang, Z., and Vladisavljevic, G.T. "Facile production of biodegradable bipolymer patchy and patchy janus particles with controlled morphology by microfluidic routes", Langmuir, 33(34), pp. 8476- 8482 (2017). https://doi.org/10.1021/acs.langmuir.7b02506.
28. Lince, F., Marchisio, D.L., and Barresi, A.A. "Strategies to control the particle size distribution of poly-"-caprolactone nanoparticles for pharmaceutical applications", J Colloid Interface Sci, 322(2), pp. 505-515 (2008). https://doi.org/10.1016/j.jcis.2008.03.033.
29. Mohanraj, V.J. and Chen, Y. "Nanoparticles - a review", Tropical Journal of Pharmaceutical Research, 5(1), pp. 561-573 (2007). https://doi.org/10.4314/tjpr.v5i1.14634.
30. Capretto, L., Carugo, D., Mazzitelli, S., et al. "Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications", Adv Drug Deliv Rev, 65(11-12), pp. 1496-1532 (2013). https://doi.org/10.4314/tjpr.v5i1.14634.
31. Ali, H.S.M., York, P., and Blagden, N. "Preparation of hydrocortisone nanosuspension through a bottomup nanoprecipitation technique using microfluidic reactors", Int J Pharm, 375(1-2), pp. 107-113 (2009). https://doi.org/10.1016/j.ijpharm.2009.03.029.
32. Su, Y.A., Kim, H., Kovenklioglu, S., et al. "Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization", 180, pp. 2625-2629 (2007). https://doi.org/10.1016/j.jssc.2007.06.033.
33. Genot, V., Desportes, S., Croushore, C., et al. "Synthesis of organic nanoparticles in a 3D  flow focusing microreactor", Chemical Engineering Journal, 161(1- 2), pp. 234-239 (2010). https://doi.org/10.1016/j.cej.2010.04.029.
34. Othman, R., Vladisavljevic, G.T., Bandulasena, H.C.H., et al. "Production of polymeric nanoparticles by micromixing in a co-
flow micro uidic glass capillary device", Chem. Eng. J., 280, p. 316 (2015).https://doi.org/10.1016/j.cej.2015.05.083.
35. Xie, H., She, Z.-G., Wang, S., et al. "One-step fabrication of polymeric Janus nanoparticles for drug delivery", Langmuir, 28(9), pp. 4459-4463 (2012). https://doi.org/10.1021/la2042185.
36. Lone, S., Kim, S.H., Nam, S.W., et al. "Microfluidic synthesis of Janus particles by UV-directed phase separation", Chem. Commun., 47(9), pp. 2634-2636 (2011). https://doi.org/10.1039/C0CC04517A.
37. Heshmatnezhad, F. and Solaimany Nazar, A.R. "Onchip controlled synthesis of polycaprolactone nanoparticles using continuous- flow microfluidic devices", J Flow Chem, 10(3), pp. 533-543 (2020). https://doi.org/10.1007/s41981-020-00092-8.
38. Osher, S. and Sethian, J.A. "Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations", J Comput Phys, 79(1), pp. 12-49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2.
39. Bashir, S., Rees, J.M., and Zimmerman, W.B. "Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method", International Journal of Multiphase Flow, 60, pp. 40-49 (2014). https://doi.org/10.1016/j.ijmultiphase flow.2013.11.012.
40. Khatibi, M., Ashrafizadeh, S.N., and Sadeghi, A. "Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification", Anal Chim Acta, 1122, pp. 48-60 (2020). https://doi.org/10.1016/j.aca.2020.05.011.
41. Seifollahi, Z. and Ashrafizadeh, S.N. "Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel", Chem Eng Sci, 261, p. 117986 (2022). https://doi.org/10.1016/j.ces.2022.117986.
42. Seifollahi, Z. and Ashrafizadeh, S.N. "Ionic-size dependent electroosmotic  flow in ion-selective biomimetic nanochannels", Colloids Surf B Biointerfaces, 216, p. 112545 (2022). https://doi.org/10.1016/j.colsurfb.2022.112545.
43. Dartoomi, H., Khatibi, M., and Ashrafizadeh, S.N. "Enhanced ionic current rectification through innovative integration of polyelectrolyte bilayers and chargedwall smart nanochannels", Anal Chem, 95(2), pp. 1522-1531 (2023). https://doi.org/10.1021/acs.analchem.2c04559.
44. Khatibi, M., Ashrafizadeh, S.N., and Sadeghi, A. "Augmentation of the reverse electrodialysis power generation in soft nanochannels via tailoring the soft layer properties", Electrochim Acta, 395, p. 139221 (2021). https://doi.org/10.1016/j.electacta.2021.139221.
45. Ayoubi, S., Khatibi, M., and Ashrafizadeh, S.N. "A variational approach applied to reduce fouling with the electroosmotic  flow in porous-wall microchannels", Micro fluid Nanofluidics, 25(12), p. 101 (2021). https://doi.org/10.1007/s10404-021-02501-3.
46. Karimzadeh, M., Khatibi, M., and Ashrafizadeh, S.N. "Impacts of the temperature-dependent properties on ion transport behavior in soft nanochannels", International Communications in Heat and Mass Transfer, 129, p. 105728 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105728.
47. Ganjizade, A., Sadeghi, A., and Ashrafizadeh, S.N. "Effect of ion partitioning on electrostatics of soft particles with volumetrically charged inner core coated with pH-regulated polyelectrolyte layer", Colloids Surf B Biointerfaces, 170, pp. 129-135 (2018).https://doi.org/10.1016/j.colsurfb.2018.05.053.
48. Ganjizade, A., Ashrafizadeh, S.N., and Sadeghi, A. "Effect of ion partitioning on electrophoresis of soft particles", Colloid Polym Sci, 297(2), pp. 191-200 (2019). https://doi.org/10.1007/s00396-018-04467-1.
49. Seifollahi, Z. and Ashrafizadeh, S.N. "Ionic-size dependent electroosmotic  flow in ion-selective biomimetic nanochannels", Colloids Surf B Biointerfaces, 216, p. 112545 (2022). https://doi.org/10.1016/j.colsurfb.2022.112545.
50. Seifollahi, Z. and Ashrafizadeh, S.N. "Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel", Chem Eng Sci, 261, p. 117986 (2022). https://doi.org/10.1016/j.ces.2022.117986.
51. Li, X. Bin, Li, F.C., Yang, J.C., Kinoshita, et al. "Study on the mechanism of droplet formation in Tjunction microchannel", Chem Eng Sci, 69(1), pp. 340-351 (2012). https://doi.org/10.1016/j.ces.2011.10.048.