References:
1. Kantola, V., Kulovesi, J., Lahti, L., et al. Printed Electronics, Now and Future, Bit Bang, 63, p. 204 (2009). http://lib.tkk.fi/Reports/2009/isbn9789522480781.pdf.
2. Kunnari, E., Valkama, J., Keskinen, M., et al. "Environmental evaluation of new technology: printed electronics case study", Journal of Cleaner Production, 17(9), pp. 791-799 (2009). https://doi.org/10.1016/j.jclepro.2008.11.020.
3. Wojcik, P.J., Printable Organic and Inorganic Materials for Flexible Electrochemical Devices, Universidade NOVA de Lisboa (Portugal) (2013). DOI:10597344.
4. Garlapati, S.K., Divya, M., Breitung, B., et al. "Printed electronics based on inorganic semiconductors: from processes and materials to devices", Advanced Materials, 30(40), 1707600 (2018). https://doi.org/10.1002/adma.201707600.
5. Beedasy, V. and Smith, P.J. "Printed electronics as prepared by inkjet printing", Materials, 13(3), p. 704 (2020). https://doi.org/10.3390/ma13030704.
6. Khan, Y., Thielens, A., Muin, S., et al. "A new frontier of printed electronics: flexible hybrid electronics", Advanced Materials, 32(15), p. 1905279 (2020). https://doi.org/10.1002/adma.201905279.
7. Hamjah, M.-K., Steinberger, M., Tam, KC., et al. "Aerosol jet printed AgNW electrode and PEDOT: PSS layers for organic light-emitting diode devices fabrication", In 14th International Congress Molded Interconnect Devices (MID), IEEE (2021). DOI: 10.1109/MID50463.2021.9361616.
8. Hooper, W.J. and William, C. Huebner, Electrostatic Printing Method and Apparatus, U.S. (1951). DOI: US2558900A.
9. Dungchai, W., Chailapakul, O., and Henry, C.S. "A low-cost, simple, and rapid fabrication method for paper-based micro fluidics using wax screenprinting", Analyst, 136(1), pp. 77-82 (2011). DOI: 10.1039/C0AN00406E.
10. Suganuma, K., Introduction to Printed Electronics, Springer Science and Business Media, 74 (2014). DOI: 10.1007/978-1-4614-9625-0.
11. Levy, D.H., Scuderi, A.C., Irving, L.M., et al., Methods of Making Thin Film Transistors Comprising Zinc- Oxide-Based Semiconductor Materials and Transistors Made Thereby, U.S. (2008). DOI: US7691666B2.
12. Cook, B.S., Cooper, J.R., and Tentzeris, M.M. "Multilayer RF capacitors on flexible substrates utilizing inkjet printed dielectric polymers", IEEE Microwave and Wireless Components Letters, 23(7), pp. 353-355 (2013). DOI: 10.1109/LMWC.2013.2264658.
13. Inoue, K., Haruta, Y., Yamanaka, M., et al., Printed Circuit Board Having Electromagnetic Wave Shield Layer and Self-Contained Printed Resistor, Google Patents (1993). DOI: US5270493A.
14. Sani, N., Robertsson, M., Cooper, P., et al. "Allprinted diode operating at 1.6 GHz", Proceedings of the National Academy of Sciences, 111(33), pp. 11943- 11948 (2014). https://doi.org/10.1073/pnas.140167611.
15. Odaki, T., Tasaki, M., Ichikawa, A., et al., Light- Emitting Diode Device, Google Patents (2003). DOI: US6521915B2.
16. Semple, J., Georgiadou, DG., Wyatt-Moon, G., et al. "Flexible diodes for radio frequency (RF) electronics: a materials perspective", Semicon-Ductor Science and Technology, 32(12), 123002 (2017). DOI: 10.1088/1361-6641/aa89ce.
17. Zhang, J., Li, Y., Zhang, B., et al. "Flexible indiumgallium- zinc-oxide Schottky diode operating beyond 2.45 GHz", Nature Communications, 6(1), p. 7561 (2015). DOI: 10.1038/ncomms8561.
18. Jo, J.W., Kim, J., Kim, K.T., et al. "Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors", Advanced Materials, 27(7), pp. 1182- 1188 (2015). DOI: 10.1002/adma.201404296.
19. Oh, S.-I., Choi, G., Hwang, H., et al. "Hydrogenated IGZO thin-film transistors using high-pressure hydrogen annealing", IEEE Transactions on Electron Devices, 60(8), pp. 2537-2541 (2013). DOI: 10.1109/TED.2013.2265326.
20. Wager, J.F., Yeh, B., Hoffman, R.L., et al. "An amorphous oxide semiconductor thin-film transistor route to oxide electronics", Current Opinion in Solid State and Materials Science, 18(2), pp. 53-61 (2014). https://doi.org/10.1016/j.cossms.2013.07.002.
21. Purushothaman, K. and Muralidharan, G. "The effect of annealing temperature on the electrochromic properties of nanostructured NiO films", Solar Energy Materials and Solar Cells, 93(8), pp. 1195-1201 (2009). https://doi.org/10.1016/j.solmat.2008.12.029.
22. Castro-Hurtado, I., Herran, J., Perez, N., et al. "Toxic gases detection by NiO sputtered thin films", Sensor Letters, 9(1), pp. 64-68 (2011). https://doi.org/10.1166/sl.2011.1420.
23. Li, Y., Xie, Y., Gong, J., et al. "Preparation of Ni/YSZ materials for SOFC anodes by buffer-solution method", Materials Science and Engineering, 86(2), pp. 119-122 B (2001). DOI: https://doi.org/10.1016/S0921-5107(01)00683-3.
24. Kraft, T.M., Berger, P.R., and Lupo, D. "Printed and organic diodes: devices, circuits and applications", Flexible and Printed Electronics, 2(3), 033001 (2017). DOI: 10.1088/2058-8585/aa8ac3.
25. Shin, W. and Murayama, N. "High performance p-type thermoelectric oxide based on NiO", Materials Letters, 45(6), pp. 302-306 (2000). https://doi.org/10.1016/S0167-577X(00)00122-1.
26. Ail, A.H. and Kadhim, R.R. "Effect of copper doping on the some physical properties of Nio thin films prepared by chemical spray pyrolysis", International Journal of Application or Innovation in Engineering and Management, 4, pp. 2319-4847 (2015). https://www.academia.edu/download/37287018/IJAIEM-2015-03-07-11.pdf.
27. Jang, W.-L., Lu, YM., Hwang, WS., et al. "Electrical properties of Li-doped NiO films", Journal of the European Ceramic Society, 30(2). pp. 503-508 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.041.
28. Nandy, S., Saha, B., Mitra, MK., et al. "Effect of oxygen partial pressure on the electrical and optical properties of highly (200) oriented ptype Ni 1-x O films by DC sputtering", Journal of Materials Science, 42, pp. 5766-5772 (2007). https://doi.org/10.1007/s10853-006-1153-x.
29. Nandy, S., Maiti, U.N., Ghosh, C.K.,et al. "Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering", Journal of Physics: Condensed Matter, 21(11), p. 115804 (2009). DOI: 10.1088/0953- 8984/21/11/115804.
30. Li, H., Chen, T.P., Hu, S.G., et al. "Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure", Optics Express, 23(21), pp. 27683-27689 (2015). https://doi.org/10.1364/OE.23.027683.
31. Lilja, K.E., Backlund, T.G.,Lupo, D., et al. "Gravure printed organic rectifying diodes operating at high frequencies", Organic Electronics, 10(5), pp. 1011-1014 (2009). https://doi.org/10.1016/j.orgel.2009.04.008.
32. Munzenrieder, N., C Zysset, C., Petti, L., et al. "Room temperature fabricated flexible NiO/IGZO pn diode under mechanical strain", Solid-State Electronics, 87, pp. 17-20 (2013). https://doi.org/10.1016/j.sse.2013.04.030.
33. Shen, Y., Liu, Z., Wang, X.L., et al. "Synthesis of IGZO ink and study of ink-jet printed IGZO thin films with different Ga concentrations", Solid-State Electronics, 138, pp. 108-112 (2017). https://doi.org/10.1016/j.sse.2017.10.006.
34. Arjmandi, N., Seraj, M., Najafi, M., et al. "Inkjetprinted high quality gate oxide for fully printed IGZO transistors", In IEEE 16th Nanotechnology Materials and Devices Conference (NMDC), Vancouver, Canada (2021). DOI: 10.1109/NMDC50713.2021.9677516.
35. Barbooti, M.M.a.A.-S.D.A. "Thermal decomposition of citric acid", Thermochimica Acta, 98, pp. 119-126 (1986). https://doi.org/10.1016/0040-6031(86)87081-2.
36. Wyrzykowski, D., Hebanowska, E., Nowak-Wiczk, G., et al. "Thermal behaviour of citric acid and isomeric aconitic acids", Journal of Thermal Analysis and Calorimetry, 104(2), pp. 731-735 (2011). https://doi.org/10.1007/s10973-010-1015-2.
37. Guo, W., Hui, K.N., and Hui, K.S. "High conductivity nickel oxide thin films by a facile sol-gel method", Materials Letters, 92, pp. 291-295 (2013). https://doi.org/10.1016/j.matlet.2012.10.109.
38. Wang, Y., Sun, X.W., Goh, G.K.L., et al. "Influence of channel layer thickness on the electrical performances of inkjet-printed In-Ga-Zn oxide thin-film transistors", IEEE Transactions on Electron Devices, 58(2), pp. 480-485 (2010). DOI: 10.1109/TED.2010.2091131.
39. Kim, M.-S., Hwan Hwang, Y., Kim, S., et al. "Effects of the oxygen vacancy concentration in InGaZnO-based resistance random access memory", Applied Physics Letters, 101(24), p. 243503 (2012). https://doi.org/10.1063/1.4770073.
40. Marks, T. and Facchetti, A., Transparent Electronics: from Synthesis to Applications, John Wiley & Sons (2010).
41. Hennek, J.W., Xia, Y., Everaerts, K., et al. "Reduced contact resistance in inkjet printed high-performance amorphous indium gallium zinc oxide transistors", ACS Applied Materials and Interfaces, 4(3), pp. 1614- 1619 (2012). https://doi.org/10.1021/am201776p.
42. Guerrero, E., Polednik, A., Ecker, M., et al. "Indium- Gallium-Zinc Oxide Schottky Diodes operating across the glass transition of stimuli-responsive polymers", Advanced Electronic Materials, 6(4), p. 1901210 (2020). https://doi.org/10.1002/aelm.201901210.