1. Ma, K. and Liu, J. "Liquid metal cooling in thermal management of computer chips", Frontiers of Energy and Power Engineering in China, 1, pp. 384-402 (2007). https://doi.org/10.1007/s11708-007-0057-3.
2. Al-Rashed, M.H., Dzido, G., Korpy's, M., et al. "Investigation on the CPU nanofluid cooling", Microelectronics Reliability, 63, pp. 159-165 (2016). https://doi.org/10.1016/j.microrel.2016.06.016.
3. Colangelo, G., Favale, E., Milanese M., et al. "Cooling of electronic devices: Nano uids contribution", Applied Thermal Engineering, 127, pp. 421-435 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.042.
4. Salman, B.H., Mohammed, H.A., Munisamy, K.M., et al. "Characteristics of heat transfer and fluid flow in microtube and microchenneel using conventional fluids and nanofluids: A review", Renewable and Sustainable Energy Reviews, 28, pp. 848-880 (2013). https://doi.org/10.1016/j.rser.2013.08.012.
5. Wang, X. and Mujumdar, A.S. "A review on nanofluids-Part II: Experiments and applications", Brazilian Journal of Chemical Engineering, 25(4), pp. 631-648 (2008). https://doi.org/10.1590/S0104- 66322008000400002.
6. Somesekhar, K., Malleswara Rao, K.N.D., Sankararao, V., et al. "A CFD investigation of heat transfer enhancement of shell and tube heat exchanger using Al2O3-water nanofluid", Materials Today: Proceedings, 5(1), pp. 1057-1062 (2018). https://doi.org/10.1016/j.matpr.2017.11.182.
7. Zeiny, A., Al-Bahhdadi, M.A.R., Arear, W.F., et al. "Al2O3-H2O nanofluids for cooling PEM fuel cells: A critical assessment", International Journal of Hydrogen Energy, 47(91), pp. 38823-38836 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.040.
8. Al-Baghdadi, M., Noor, Z., Zeiny, A., et al. "CFD analysis of a nanofluid-based microchannel heat sink", Thermal Science and Engineering Progress, 20, 100685 (2020). https://doi.org/10.1016/j.tsep.2020.100685.
9. Narendar, G. and Tejo Satya Charisma, K. "CFD study on the effect of nanofluids in natural circulation loop", Materials Today: Proceedings, 49(5), pp. 2116- 2123 (2022). https://doi.org/10.1016/j.matpr. 2021.08.317.
10. Ferrao Teixeira Alves, L.O., Henrquez, J.R., da Costa, J.A., et al. "Comparative performance analysis of internal combustion engine water jacket coolant using a mix of Al2O3 and CuO-based nanofluid and ethylene glycol", Energy, 250, 123832 (2022). https://doi.org/10.1016/j.energy.2022.123832.
11. Kim, S., Song, H., Yu, K., et al. "Comparison of CFD simulations to experiment for heat transfer characteristics with aqueous Al2O3 nanofluid in heat exchanger tube", International Communications in Heat and Mass Transfer, 95, pp. 123-131 (2018). https://doi.org/10.1016/j.icheat masstransfer.2018. 05.005.
12. Ozenbiner, O. and Yurddas, A., "Numerical analysis of heat transfer of a nanofluid counter- flow heat exchanger", International Communications in Heat and Mass Transfer, 137, 106306 (2022).https://doi.org/10. 1016/j.icheatmasstransfer.2022.106306.
13. Hasan, H.A., Hatem, A.A., Abd, L.A., et al. "Numerical investigation of nanofluids comprising different metal oxide nanoparticles for cooling concentration photovoltaic thermal CPVT", Cleaner Engineering and Technology, 10, 100543 (2022). https://doi.org/10.1016/j.clet.2022.100543.
14. Cruz, P.A.D., Yamat, E.E., Nuqui, J.P.E., et al. "Computational Fluid Dynamics (CFD) analysis of the heat transfer and fluid flow of copper (II) oxide-water nanofluid in a shell and tube heat exchanger", Digital Chemical Engineering, 3, 100014 (2022). https://doi.org/10.1016/j.dche.2022.100014.
15. El-Khouly, M.M., El Bouz, M.A., and Sultan, G.I. "Experimental and computational study of using nanofluid for thermal management of electronic chips", Journal of Energy Storage, 39, 102630 (2021). https://doi.org/10.1016/j.est.2021.102630.
16. Moraveji, M.K., Ardehali, R.M., and Ijam, A. "CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink", International Communications in Heat and Mass Transfer, 40, pp. 58-66 (2013).https://doi.org/10.1016/j.icheat masstransfer.2012.10.021.
17. Raja, M., Vijayan, R., Dineshkumar, P., et al. "Review on nanofluids characterization, heat transfer characteristics and applications", Renewable and Sustainable Energy Reviews, 64, pp. 163-173 (2016). https://doi.org/10.1016/j.rser.2016.05.079.
18. Mukesh Kumar, P.C. and Arun Kumar, C.M. "Numerical study on heat transfer performance using Al2O3/water nanofluids in six circular channel heat sink for electronic chip", Materials Today: Proceedings, 21(1), pp. 194-201 (2020). https://doi.org/10.1016/j.matpr.2019.04.220.
19. Vasilev, M.P., Abiev, R.Sh., and Kumar, R. "Effect of circular pin-fins geometry and their arrangement on heat transfer performance for laminar flow in microchannel heat sink", International Journal of Thermal Sciences, 170, 107177 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.107177.
20. Khetib, Y., Sedraoui, K., Melaibari, A.A., et al. "Heat transfer and pressure drop in turbulent nanofluid flow in a pin-fin heat sink: Fin and nanoparticles shape effects", Case Studies in Thermal Engineering, 28, 101378 (2021). https://doi.org/10.1016/j.csite.2021.101378.
21. Saeed, M. and Kim, M.H. "Numerical study on thermal hydraulic performance of water cooled mini-channel heat sinks", International Journal of Refrigeration, 69, pp. 147-164 (2016). https://doi.org/10.1016/j.ijrefrig.2016.05.004.
22. Whelan, B.P., Kempers, R., and Robinson, A.J. "A liquid-based system for CPU cooling implementing a jet array impingement waterblock and a tube array remote heat exchanger", Applied Thermal Engineering, 39, pp. 86-94 (2012). https://doi.org/10.1016/j.applthermaleng.2012.01.013.
23. Nazari, M., Karami, M., and Ashouri, M. "Comparing the thermal performance of water, ethylene glycol, alumina and CNT nanofluids in CPU cooling: Experimental study", Experimental Thermal and Fluid Science, 57, pp. 371-377 (2014). https://doi.org/10.1016/j.exptherm usci.2014.06.003.
24. Ghasemi, S.E., Ranjbar, A.A., and Hosseini, M.J. "Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study", Journal of Molecular Liquids, 248, pp. 264-270 (2017). https://doi.org/10.1016/j.molliq.2017.10.062.
25. Saeed, M. and Kim, M.H. "Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks", International Journal of Heat and Mass Transfer, 120, pp. 671-682 (2018). https://doi.org/10.1016/j.ijheatmasstransfer. 2017.12.075.
26. Mukesh Kumar, P.C. and Arun Kumar, C.M. "Numerical evaluation of cooling performances of semiconductor using CuO/water nanofluids", Heliyon, 5(8), e02227 (2019). https://doi.org/10.1016/j.heliyon.2019.e02227.
27. Yang, L., Huang, J., Mao, M., et al. "Numerical assessment of Ag-water nano-fluid flow in two new microchannel heatsinks: Thermal performance and thermodynamic considerations", International Communications in Heat and Mass Transfer, 110, 104415 (2020).
https://doi.org/10.1016/j.icheatmasstransfer. 2019.104415.
28. Wiriyasart, S., Suksusron, P., Hommalee, C., et al. "Heat transfer enhancement of thermoelectric cooling module with nanofluid and ferrofluid as base fluids", Case Studies in Thermal Engineering, 24, 100877 (2021). https://doi.org/10.1016/j.csite.2021.100877.
29. Zhao, N., Qi, C., Chen, T., et al. "Experimental study on influences of cylindrical grooves on thermal efficiency, exergy efficiency and entropy generation of CPU cooled by nanofluids", International Journal of Heat and Mass Transfer, 135, pp. 16-32 (2019).
https://doi.org/10.1016/j.ijheatmasstransfer. 2019.01.106.
30. Bakhti, F.Z. and Si-Ameur, M. "A comparison of mixed convective heat transfer performance of nanofluids cooled heat sink with circular perforated pin fin", Applied Thermal Engineering, 159, 113819 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113819.
31. Jahanbakhshi, A., Nadooshan, A.A., and Bayareh, M. "Cooling of a lithium-ion battery using microchannel heatsink with wavy microtubes in the presence of nanofluid", Journal of Energy Storage, 49, 104128 (2022). https://doi.org/10.1016/j.est.2022.104128.
32. Al-Tae'y, K. A., Ali, E.H., and Jebur, M.N. "Experimental investigation of water cooled minichannel heat sink for computer processing unit cooling", Journal of Engineering Research and Application, 7(8), pp. 38-49 (2017). https://doi.org/10.9790/9622-0708013849.
33. Qi, C., Zhao, N., Cui, X., et al. "Effects of half spherical bulges on heat transfer characteristics of CPU cooled by TiO2-water nanofluids", International Journal of Heat and Mass Transfer, 123, pp. 320-330 (2018). https://doi.org/10.1016/j.ijheatmasstransfer. 2018.02.086.
34. Gorzin, M., Ranjbar, A.A., and Hosseini, M.J. "Experimental and numerical investigation on thermal and hydraulic performance of novel serpentine minichannel heat sink for liquid CPU cooling", Energy Reports, 8, pp. 3375-3385 (2022). https://doi.org/10.1016/j.egyr.2022.02.179.
35. Karabulut, K., Buyruk, E., and Kilinc, F. "Grafen Oksit Nanoparcacklar eren Nanoakckann Tasnm Is Transferi ve Basnc Dususu Arts Uzerindeki Etkisinin Duz Bir Boruda Deneysel Olarak Arastrlmas", Muhendis ve Makina, 59(690), pp. 45-67 (2018). https://dergipark.org.tr/en/download/ article-file/809756.
36. Cengel, Y. and Cimbala, J.M., Fluid Mechanics: Fundamentals and Applications, McGraw-Hill Education, New York, USA, (2006).
37. ANSYS Fluent Theory Guide (2013).