Numerical simulation of electroosmotic flow in a rectangular microchannel with use of magnetic and electric fields

Document Type : Article

Authors

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran

Abstract

Pumping fluid is one of the crucial parts of any microfluidic system. Using electric and magnetic fields as a substitute for moving parts can have many advantages. In this study hydrodynamic and heat transfer characteristics of electroosmotic flow under influence of lateral electric and transverse magnetic field, are studied numerically. Results indicate that the dimensionless parameters such as Hartmann number, intensity of the lateral electric field, pressure gradient parameter and aspect ratio have an important role in controlling flow. It can be implied that the enhancement of pressure gradient leads to the decrease of critical Hartmann number, and this dependency can be reduced from 44% to 7% for S=0.5 to S=50 in two pressure gradients of Ω=1 and Ω=20. In addition, the reduction of aspect ratio of microchannel section leads to the increment of critical Hartmann number in a specified lateral electric field. At the end, thermal analysis is being done by consideration of the effects of magnetic and electric fields on the Nusselt number.

Keywords

Main Subjects


References: 
1. Gad-El-Hak, M. "The  fluid mechanics of microdevicesthe freeman scholar lecture", Journal of Fluids Engineering, Transactions of the ASME, 121(1), pp. 5-33 (1999). DOI: 10.1115/1.2822013.
2. Probstein, R.F., Physicochemical Hydrodynamics: An Introduction, John Wiley and Sons (2005). DOI: 10.1002/9780471725121.
3. Manz, A., Graber, N., and Widmer, H.M. "Miniaturized total chemical analysis systems: A novel concept for chemical sensing", Sens Actuators B Chem, 1(1-6), pp. 244-248 (1990). DOI: 10.1016/0925- 4005(90)80209-I.
4. Jang, J. and Lee, S.S. "Theoretical and experimental study of MHD (magneto hydrodynamic) micro pump", Sens Actuators A Phys, 80(1), pp. 84-89 (2000). DOI: 10.1016/S0924-4247(99)00302-7.
5. Laser, D.J. and Santiago, J.G. "A review of micropumps", Journal of Micromechanics and Microengineering, 14(6), pp. R35-R64 (2004). DOI: 10.1088/0960- 1317/14/6/R01.
6. Nguyen, N.T., Huang, X., and Chuan, T.K. "MEMSmicropumps: A review", Journal of Fluids Engineering, Transactions of the ASME, 124(2), pp. 384-392 (2002). DOI: 10.1115/1.1459075.
7. Karniadakis, G., Beskok, A., and Aluru, N., Micro flows and Nano flows: Fundamentals and Simulation, Springer Science and Business Media (2006). DOI: 10.1007/0-387-28676-4.
8. Das, S., Chakraborty, S., and Mitra, S.K. "Magnetohydrodynamics in narrow  fluidic channels in presence of spatially non-uniform magnetic fields: Framework for combined magnetohydrodynamic and magnetophoretic particle transport", Micro fluid Nano fluidics, 13(5), pp. 799-807 (2012). DOI: 10.1007/s10404- 012-1001-z.
9. Sarkar, S., Ganguly, S., and Dutta, P. "Thermo fluidic characteristics of combined electroosmotic and pressure driven  flows in narrow confinements in presence of spatially non-uniform magnetic field", Int J Heat Mass Transf, 104, pp. 1325-1340 (2017). DOI: 10.1016/j.ijheatmasstransfer.2016.09.072.
10. Wang, P.J., Chang, C.Y., and Chang, M.L. "Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump", Biosens Bioelectron, pp. 115-121 (2004). DOI: 10.1016/j.bios.2003.10.018.
11. Chakraborty, S. and Paul, D. "Microchannel flow control through a combined electromagnetohydrodynamic transport", J Phys D Appl Phys, 39, p. 5364 (2006). DOI: 10.1088/0022-3727/39/24/038.
12. Duwairi, H. and Abdullah, M. "Thermal and flow analysis of a magneto-hydrodynamic micropump", Microsystem Technologies, 13(1), pp. 33-39 (2007). DOI: 10.1007/s00542-006-0258-0.
13. Chakraborty, R., Dey, R., and Chakraborty, S. "Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat  flux", Int J Heat Mass Transf, 67, pp. 1151-1162 (2013). DOI: 10.1016/j.ijheatmasstransfer.2013.08.099.
14. Escandon, J., Santiago, F., Bautista, O., et al. "Hydrodynamics and thermal analysis of a mixed electromagnetohydrodynamic- pressure driven  flow for Phan-Thien-Tanner  fluids in a microchannel", International Journal of Thermal Sciences, 86, pp. 246-257 (2014). DOI: 10.1016/j.ijthermalsci.2014.07.009.
15. Kiyasatfar, M. and Pourmahmoud, N. "Laminar MHD  flow and heat transfer of power-law  fluids in square microchannels", International Journal of Thermal Sciences, 99, pp. 26-35 (2016). DOI: 10.1016/j.ijthermalsci.2015.07.031.
16. Wang, L., Jian, Y., Liu, Q., et al. "Electromagnetohydrodynamic flow and heat transfer of third grade  fluids between two micro-parallel plates", Colloids Surf A Physicochem Eng Asp, 494(494), pp. 87-94 (2016). DOI: 10.1016/j.colsurfa.2016.01.006.
17. Qi, C. and Wu, C. "Electromagnetohydrodynamic flow in a rectangular microchannel", Sens Actuators B Chem, 263, pp. 643-660 (2018). DOI: 10.1016/j.snb.2018.02.107.
18. Yang, C., Jian, Y., Xie, Z., et al. "Heat transfer characteristics of magneto hydrodynamic electroosmotic flow in a rectangular microchannel", European Journal of Mechanics-B/Fluids, 74, pp. 180-190 (2019). DOI: 10.1016/j.euromech u.2018.11.015.
19. Moradmand, A., Saghafian, M., and Mofrad, B. "Electroosmotic pressure-driven  flow through a slit microchannel with electric and magnetic transverse field", Journal of Applied Fluid Mechanics, 12, pp. 961-969 (2019). DOI: 10.29252/jafm.12.03.28816.
20. Yang, C.-H. and Jian, Y.-J. "Effect of patterned hydrodynamic slip on electromagnetohydrodynamic flow in parallel plate microchannel", Chinese Physics B, 29(11), p. 114101 (2020). DOI: 10.1088/1674- 1056/abab71.
21. Deng, S., Xiao, T., and Wu, S. "Two-layer combined electroosmotic and pressure-driven  flow of power-law fluids in a circular microcapillary", Colloids Surf A Physicochem Eng Asp, 610, p. 125727 (2021). DOI: 10.1016/j.colsurfa.2020.125727.
22. Ge, Y., He, Q., Lin, Y., et al. "Multi-objective optimization of a mini-channel heat sink with non-uniform fins using genetic algorithm in coupling with CFD models", Appl Therm Eng, 207, p. 118127 (2022). DOI: 10.1016/j.applthermaleng.2022.118127.
23. Wang, G., Qian, N., and Ding, G. "Heat transfer enhancement in microchannel heat sink with bidirectional rib", Int J Heat Mass Transf, 136, pp. 597-609 (2019). DOI: 10.1016/j.ijheatmasstransfer.2019.02.018.
24. Biswas, N., Mondal, M.K., Mandal, D.K., et al. "A narrative loom of hybrid nanofluid-filled wavy walled tilted porous enclosure imposing a partially active magnetic field", Int J Mech Sci, 217, p. 107028 (2022). DOI: 10.1016/j.ijmecsci.2021.107028.
25. Mandal, D.K., Biswas, N., Manna, N.K., et al. "Thermo-fluidic transport process in a novel M-shaped M. Saghafian et al./Scientia Iranica, Transactions B: Mechanical Engineering 31 (2024) 1359-1373 1373.
cavity packed with non-Darcian porous medium and hybrid nano fluid: Application of artificial neural network (ANN)", Physics of Fluids, 34(3), p. 033608 (2022). DOI: 10.1063/5.0082942.
26. Datta, A., Debbarma, D., Biswas, N., et al. "The Role of Flow Structures on the Thermal Performance of Microchannels With Wall Features", J Therm Sci Eng Appl, 13(2), p. 021019 (2020). DOI: 10.1115/1.4047709.
27. Amit, K., Datta, A., Biswas, N., et al. "Designing of microsink to maximize the thermal performance and minimize the Entropy generation with the role of  flow structures", Int J Heat Mass Transf, 176, p. 121421 (2021). DOI: 10.1016/j.ijheatmasstransfer.2021.121421.
28. Biswas, N., Chamkha, A.J., and Manna, N.K. "Energy-saving method of heat transfer enhancement during magneto-thermal convection in typical thermal cavities adopting aspiration", SN Appl Sci, 2(11), p. 1911 (2020). DOI: 10.1007/s42452-020-03634-w.
29. Alharbi, K.A.M., Khan, Z., Zuhra, S., et al. "Numerical study of the electro magneto hydro dynamic bio convection  flow of micro polar nano fluid through a stretching sheet with thermal radiation and stratification", ACS Omega, 7(47), pp. 42733-42751 (2022). DOI: 10.1021/acsomega.2c04145.
30. Ciocanel, C. and Islam, N. "Integrated Electro- Magnetochydrodynamic Micropumps and Methods for Pumping Fluids", U.S. Patent US-8480377-B2 (July 9, 2013). 
31. Alipanah, M., Hafttananian, M., Hedayati, N., et al. "Micro fluidic on-demand particle separation using induced charged electroosmotic  flow and magnetic field", J Magn Magn Mater, 537, p. 168156 (2021). DOI: 10.1016/j.jmmm.2021.168156.
32. Masliyah, J.H. and Bhattacharjee, S., Electrokinetic and Colloid Transport Phenomena, Wiley-Interscience (2006). DOI: 10.1002/0471799742.
33. Davidson, P.A. "An introduction to magnetohydrodynamics" (2002). DOI: 10.1017/9781316672853.
34. Muller, U. and Buhler, L., Magneto Fluid Dynamics in Channels and Containers, Springer Berlin Heidelberg, Berlin, Heidelberg (2001). DOI: 10.1115/1.1445331.
35. Mirbozorgi, S.A., Niazmand, H., and Renksizbulut, M. "Electro-osmotic  flow in reservoir-connected at microchannel with non-uniform zeta potential", Journal of Fluids Engineering, Transactions of the ASME, 128(6), pp. 1133-1143 (2006). DOI: 10.1115/1.2353261.
36. Deng, S.Y., Jian, Y.J., Bi, Y.H., et al. "Unsteady electroosmotic  flow of power-law  fluid in a rectangular microchannel", Mech Res Commun, 39(1), pp. 9-14 (2012). DOI: 10.1016/j.mechrescom.2011.09.003.
37. Lim, J., Lanni, C., Evarts, E.R., et al. "Magnetophoresis of nanoparticles", ACS Nano, 5(1), pp. 217-226 (2011). DOI: 10.1021/nn102383s.
38. Nguyen, N.-T. "Micro-magneto fluidics: interactions between magnetism and  fluid flow on the microscale", Micro fluid Nano fluidics, 12(1-4), pp. 1-16 (2012). DOI: 10.1007/s10404-011-0903-5.
39. Chen, X. and Hu, Z. "Study aspect ratio of microchannel on different polymer substrates with CO2 laser and hot bonding for micro fluidic chip", AIP Adv, 8(1), p. 015116 (2018). DOI: 10.1063/1.5012772.