Python programming predictions of thermal behavioral aspects of orange peel and coconut-coir reinforced epoxy composites

Document Type : Article

Authors

1 Department of Mechanical Engineering, Lendi Institute of Engineering and Technology, Vizianagaram, 535005, India.

2 UniveFaculty of Manufacturing Engineering, University Teknikal Malaysia, 76100 Durian Tunggal, Melaka, Malaysiasity Teknikal Malaysia

3 Department of Mechanical Engineering, Lendi Institute of Engineering and Technology, Vizianagaram, 535005, India

Abstract

Using a hand lay-up approach, both orange peel and coconut coir fibres are used in particulate form with an epoxy matrix to create partly green biodegradable composites. The findings indicate great opportunities for employing these natural fibres. The thermal conductivity of orange peel and coconut-coir epoxy composites was measured experimentally for various volume fractions of particulate fibres. The experimental findings show that as fibre concentration increases, thermal conductivity decreases. Experimental data are compared to theoretical models to determine the change in thermal conductivity with fibre amount fraction.There was a clear correlation between the hypotheses and the actual results. Regression analysis using Python programming is also done for the prediction of the thermal properties of particulate orange peel and coconut-coir fibre composites. It is observed that coir fibre composites outperformed the orange peel, indicating that the coir fibre composite is a proper thermal insulator that can be used in many industries, like the automotive industry, buildings, and steam pipes, to reduce heat transfer and thereby save a lot of energy.

Keywords

Main Subjects


References:
1. John, M.J. and Anandjiwala, R.D. "Chemical modification of  flax reinforced polypropylene composites", Compos. A. Appl. Sci. Manuf., 40(4), pp. 442-8 (2009). DOI: 10.1016/j.compositesa.2009.01.007.
2. Azwa, Z.N., Yousif, B.F, Manalo, A.C., et al. "A review on the degradability of polymeric composites based on natural fibers", Mater. Des., 47, pp. 424-42 (2013). DOI: 10.1016/j.matdes.2012.11.025.
3. de Araujo Alves Lima, R., Kawasaki Cavalcanti, D., deSouza e Silva Neto, J., et al. "Effect of surface treatments on interfacial properties of natural intra laminar hybrid composites", Polym. Compos., 41, pp. 314-325 (2020). DOI: 10.1002/pc.25371.
4. Moudood, A., Rahman, A., Khanlou, H.M., et al. "Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites", Compos. Part B Eng., 171, pp. 284-293 (2019). DOI: 10.1016/j.compositesb.2019.05.032.
5. Sumesh, K.R., Kanthavel, K., and Kavimani, V. "Peanut oil cake-derived cellulose fiber: extraction, application of mechanical and thermal properties in pineapple/ ax natural fiber composites", Int. J. Biol. Macromol., 150, pp. 775-785 (2020). DOI: 10.1016/j.ijbiomac.2020.02.118.
6. Sawpan, M.A., Pickering, K.L., and Ferny hough, A.l. "Effect of fiber treatments on interfacial shear strength of hemp fiber-reinforced polylactide and unsaturated polyester composites", Compos. A., 42, pp. 1189-96 (2011). DOI: DOI: 10.1016/j.compositesa.2011.05.003.
7. Cai, M., Takagi, H., Nakagaito, A.N., et al. "Waterhouse GIN. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites", Compos. A., 90, pp. 589-97 (2016). DOI: 10.1016/j.compositesa.2016.08.025.
8. Mohanta, N. and Acharya, S.K. "Fiber surface treatment: its effect on structural, thermal, and mechanical properties of Luffa cylindrica fiber and its composite", J. Compos. Mater., 50(22), pp. 3117-31 (2016). DOI:10.1177/0021998315615654.
9. Imanaka, Y., Multilayered Low Temperature Co-fired Ceramics (LTCC) Technology, Springer, 229 (2005).DOI: 10.1007/b101196.
10. Raghavendra, G., Ojha, S., Acharya, S.K., et al. "Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composite", Journal of Composite Materials, 48(20), pp. 1-11 (2013). DOI:10.1177/0021998313499955.
11. Rizvi, S.M.A., Dwivedi, A., Raza, S.S., et al. "An investigation of thermal properties of reinforced coconut coir-bagasse fiber polymer hybrid composite", IJSRSET, 3(1), pp. 427-432 (2017). Online ISSN : 2394-4099.
12. Ebadi-Dehaghani, H. and Branch, M.N.S. "Thermal Conductivity of Nanoparticles Filled Polymers", Smart Nanoparticles Technology, 1 , pp. 519-540 (2012). ISBN: 978-953-51-0500-8.
13. Tsekmes, I.A., Kochetov, R., Morshuis, P., et al. "Thermal conductivity of polymeric composites: A review", IEEE International Conference on Solid Dielectrics, pp. 678-681 (2013). DOI: 10.1109/ICSD.2013.6619698.
14. Leea, G.W., Parka, M., Kima, J., et al. "Enhanced thermal conductivity of polymer composites filled with hybrid filler", Composites: Part A., 37(5), pp. 727-734 (2006). DOI: 10.1016/j.compositesa.2005.07.006.
15. Bailleul, J.L., Delaunay, D., Jarny, Y., et al. "Thermal conductivity of unidirectional reinforced composite materials-experimental measurement as a function of sate of cure", Reinf. Plast. Compos, 20(1), 52-64 (2001). DOI: 10.1106/UE8K-1RVA-WE2B-8V9D.
16. Saxena, N.S., Agarwal, R., Sharma, K.B., et al. "Thermal conduction and diffusion through glass-banana fiber polyester composites", Indian Journal of Pure and Applied Physics, 41, pp. 448-452 (2003). 
17. Mangal, R., Saxena, N.S., Sreekala, M., et al. "Thermal properties of pine apple leaf fiber reinforced composites", Materials Science and Engineering: A., on Science Direct, 339, pp. 281-285 (2003). DOI: 10.1016/S0921-5093(02)00166-1.
18. Raju, G.U., Gaitonde, V.N., and Kumarappa, S. "Experimental study on optimization of thermal properties of ground nut shell particle reinforced polymer composites", International Journal of Emerging Sciences, 2, pp. 433-454 (2012). ISSN: 2222-4254.
19. Jopek, H. and Strek, T. "Optimization of the effective  thermal conductivity of a composite", In Convection and Conduction Heat Transfer, Ed. A. Ahsan, InTech., (2011). DOI: 10.5772/24531.
20. Flaquer, J., Rios, A., Martin-Meizoso, S., et al. "Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites", Computational Materials Science, 41, p. 156 (2007). DOI: 10.1016/j.commatsci.2007.03.016.
21. Kanat, Z.E. "A study on prediction and modeling of thermal resistance of knitted fabrics in different moisture content", Ph.D Thesis, Ege University Graduate School of Natural and Applied Science, Turkey, pp. 150-173 (2013).
22. Siva Sakthivel, P.S., Murugan V.V., and Sudhakaran R. "Prediction of tool wear from machining parameters by response surface methodology in end milling", International Journal of Engineering Science and Technology, 2(6), pp. 1780-1789 (2010). ISSN: 0975-5462.
23. Chen, Li., Yinchuan, P., Meng, B., et al. "Phase transition and plasti deformation mechanisms induced by self-rotating grinding of GaN single crystals", Int. Journal of Machine Tools and Manufacture, 172, 103827(10 pages) (2022). DOI: 10.1016/j.ijmachtools.2021.103827.
24. Chen, Li., Yinchuan, P., Meng, B., et al. "Anisotropy dependence of material removal and deformation mechanisms during nano scratch of gallium nitride single crystals on (001) plane)", Applied Surface Science, 78 152028 (10 pages) (2022). DOI: 10.1016/j.apsusc.2021.152028.
25. Sathish Kumar, T.P., Ramakrishnan, S., and Navaneetha Krishnan, P. "Effect of glass and banana fiber mat orientation and number of layers on mechanical properties of hybrid composites", Biofibers and Biopolymers for Biocomposites, 1, pp. 295-312 (2020). DOI: 10.1007/978-3-030-40301-0 15.
26. James, J.D., Manoharan, D.S., Sai Krishnan, G., et al. "Influence of bagasse/sisal fiber stacking sequence on the mechanical characteristics of hybrid-epoxy composites", J. Nat. Fibers, 17(10), pp. 1497-1507 (2020). DOI: 10.1080/15440478.2019.1581119.
27. Metiri, W., Hadjoub, F., and Tliba, L.T., "Effect of reinforcement volume fraction on the density and elastic parameters of BMG's matrix composites", Rev.Sci.Technology, 24, pp. 75-83 (2012). eISSN: 2352- 9717.
28. Ramzan, Md.A.K., Tahir, D., Haq, E.U., et al. "Natural fibres as promising environmental-friendly reinforcements for polymer composites", Polymers and Polymer Composites, 29(4), pp. 277-300 (2020). DOI: 10.1177/0967391120913723.
29. Ayala, J.R., Montero, G., Coronado, M.A., et al."Characterization of orange peel waste and valorization to obtain reducing sugars molecules", 26(5), p. 1348 (2021). DOI: 10.3390/molecules26051348.
30. Omah, A.D., Ugwuogbo, E.E., Offor, P.O., et al.  Experimental effect of filler variation on the polarizability of polymer matrix composites developed from orange peel particulates", J. Mater. Environ. Sci., 12(3), pp. 406-417 (2021). ISSN: 2028-2508.
31. Satish P., Venkatesh, T., and Seeli, H. "Experimental investigations on thermal conductivity of fenugreek and banana composites", J. Inst Eng. India Ser. D., 99(1), pp. 51-55 (2017). DOI: 10.1007/s40033-017- 0146-z.
32. Pujari, S. Ramakrishna, A., and Padal, K.T.B.  Investigations on thermal conductivities of jute and banana fiber reinforced epoxy composites", J. Inst. Eng. India Ser. D. 98(1), pp.79-83 (2016). DOI: 10.1007/s40033- 015-0102-8.
33. Uyanik, G.K. and Guler, N. "A Study on multiple linear regression analysis", Procedia Social and Behavioral sciences, 106, pp. 234-240 (2013). DOI: 10.1016/j.sbspro.2013.12.027.
34. Zsuzsanna, T. and Marian, L. "Multiple regression analysis of performance indicators in the ceramic industry", Procedia. Economics and Finance, 3, pp. 509-514 (2012). DOI: 10.1016/S2212-5671(12)00188-8.
35. Prasanna, G.V. "Surface modification, characterization and optimization of hybrid biocomposites", Fatigue, Durability, and Fracture Mechanics, 1, pp. 623- 632 (2020). DOI:10.1007/978-981-15-4779-9 43.