Figure-of-Merit (FoM) optimization in class-C oscillators

Document Type : Research Note

Authors

1 Department of Electrical Engineering, Sharif Univercity of Technology, Tehran, Iran

2 Department of Electrical Engineering, Cornell University, Ithaca, NY, USA

Abstract

In this paper, a new approach to optimize phase noise and figure of merit (FoM) in class-C oscillators is presented. This approach recruits DC voltage of the common source node of the switching
pair transistors as an indicator to achieve the best performance of a class-C oscillator. The proposed indicator has the advantages of not introducing any loading effect to the output node, and ndependency from PVT changes. The method is simple and applicable to any oscillator with class-C topology, and with some modifications it would be applied to other oscillator topologies like class-B. The idea is verified using theoretical analysis, and circuit simulations on 0.18um CMOS technology at 2GHz oscillation frequency. Moreover, a discrete prototype is fabricated at 15MHz and measurement results are provided which further validate feasibility of this approach.

Keywords

Main Subjects


References:
1. Mansour, M., Zekry, A., K. Ali M., et al. "A comparative study between Class-C and Class-B quadrature voltage-controlled power oscillator for multi-standard applications", Microelectronics Journal, 98, 104726 (April 2020). DOI: 10.1016/j.mejo.2020.104726.
2. Hegazi, E., Sjoland, H., and Abidi, A. "A filtering technique to lower LC oscillator phase noise", IEEE Journal of Solid-State Circuits, 36(12), pp. 1730-1740 (July 2013). DOI: 10.1109/4.972142.
3. Teymoori, H., Fotowat Ahmady, A., and Nabavi, A. "A new low phase noise LC-tank CMOS cascode Crosscoupled oscillator", IEEE J. Iranian Conference on Electrical Engineering (May 2010). DOI: 10.1109/IRANIANCEE. 2010.5507039.
4. Okada, K., Nomiyama, Y., Murakami, R., et al. "A 0.114-mW dual-conduction class-C CMOS VCO with 0.2-V power supply", Symposium on VLSI Circuits, (June 2009).
5. Fanori, L., Liscidini, A., and Andreani, P. "A 6.7-to-9.2GHz 55nm CMOS hybrid class-B/class- C cellular TX VCO", IEEE International Solid- State Circuits Conference (February 2012). DOI: 10.1109/ISSCC.2012.6177049.
6. Lim, C., Ramiah, H., Yin, J., et al. "A 5.1-to-7.3 mW, 2.4-to-5 GHz Class-C Mode-Switching Single- Ended-Complementary VCO Achieving > 190 dBc/Hz FoM", IEEE Transactions on Circuits and Systems II: Express Briefs, 66(2), pp. 237-241 (June 2018). DOI: 10.1109/TCSII.2018.2848301.
7. Sheikhahmadi, S., Moezzi, M., and Ghafoorifard, H. "A low phase noise class C oscillator with improved resonator and robust start-up", IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1), pp. 92-96 (June 2020). DOI: 10.1109/TCSII.2020.3005251.
8. Cheng, X., Chen, F., Xia, X., et al. "A modified darlington-based class C VCO with simultaneous optimization of phase noise/FoM in GaAs technology", IEEE Microwave and Wireless Components Letters, 30(5), pp. 500-503 (April 2020). DOI:
10.1109/LMWC.2020.2983845.
9. Shasidharan, P., Ramiah, H., and Rajendran, J. "A 2.2 to 2.9 GHz complementary class C VCO with PMOS tail-current source feedback achieving-120 dBc/Hz phase noise at 1 MHz offset", IEEE Access, 7, pp. 91325-91336 (July 2019). DOI: 10.1109/ACCESS. 2019.2927031.
10. Martins, R., Lourenco, N., Horta, N., et al. "Manyobjective sizing optimization of a Class C/D VCO for ultralow-power IoT and ultralow-phase-noise cellular applications", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(1), pp. 69-82 (October 2018). DOI: 10.1109/TVLSI.2018.2872410.
11. Deng, W., Okada, K., and Matsuzava, A. "A feedback class-C VCO with robust start-up condition and enhanced oscillation swing", Proceedings of the ESSCIRC (September 2011). DOI: 10.1109/ESSCIRC. 2011.6044931.
12. Chen, J., Jonsson, F., Calrsson, M., et al. "A low power, startup ensured and constant amplitude class C VCO in 0.18mCMOS", IEEE Microwave and Wireless Components Latters, 21(8), pp. 427-429 (July 2011). DOI: 10.1109/LMWC.2011.2160620.
13. Jang, S. and Wang, J. "Low-phase noise class-C VCO with dynamic body bias", Electronics Letters, 53, (May 2017). DOI: 10.1109/ISNE.2017.7968734.
14. Fanori, L. and Andreani, P. "Low-phase-noise 3.4-4.5 GHz dynamic-bias class-C CMOS VCOs with a FoM of 191 dBc/Hz", Proceedings of the ESSCIRC, (September 2012). DOI: 10.1109/ESSCIRC.2012.6341341.
15. Thakkar, A., Theertham, S., Mirajkar, P., et al. "A 3.9-4.5 GHz class-C VCO with accurate current injection based on capacitive feedback", 12th European Microwave Integrated Circuits Conference (Eu- MIC), pp. 224-227 (October 2017). DOI: 10.23919/Eu- MIC.2017.8230700.
16. Liao, X. and Liu, L. "A low-voltage robust Class- C VCO with dual digital feedback loops", IEEE Transactions on Circuits and Systems II: Express Briefs, 67(11), pp. 2347-2351 (February 2020). DOI: 10.1109/TCSII.2020.2977145.
17. Lee, J.-Y, Kim, G.S., Ko, G.-H., et al. "Low phase noise and wide-range class-C VCO using auto-adaptive bias technique", Electronics, 9, 1290 (2020). DOI: 10.3390/electronics9081290.
18. Wu, T., Moon, U., and Mayaram, K. "Dependence of LC VCO oscillation frequency on bias current", IEEE International Symposium on Circuits and Systems (May 2006). DOI: 10.1109/ISCAS.2006.1693764.
19. Bhat, A. and Krishnapura, N. "A tail-resonance calibration technique for wide tuning range LC VCOs", IEEE International Symposium on Circuits and Systems (May 2016). DOI: 10.1109/ISCAS.2016.7538986.
20. Nikpaik, A. and Nabavi, A. "Analysis of  flicker noise conversion to phase noise in CMOS differential LC oscillators", International Journal of Circuit Theoryand Applications, 44, pp. 398-418 (April 2015). DOI: 10.1002/cta.2083.
21. Mazzanti, A. and Andreani, P. "Class-C harmonic CMOS VCOs, with a general result on phase noise", IEEE Journal of Solid-State Circuits, 43(12), pp. 2716-2729 (December 2008). DOI: 10.1109/JSSC.2008.2004867.
22. Fanori, L. and Andreani, P. "Highly ecient class-C CMOS VCOs, including a comparison with class-B VCOs", IEEE Journal of Solid-State Circuits, 48(7), pp. 1921-1930 (December 2001). DOI: 10.1109/JSSC.2013.2253402.
23. Lee, T. and Hajimiri, A. "Oscillator phase noise: a tutorial", IEEE Journal of Solid-State Circuits, 35(3), pp. 326-336 (March 2000). DOI: 10.1109/CICC.1999.777309.
24. Groszkowski, J. "The interdependence of frequency variation and harmonic content, and the problem of constant-frequency oscillators", Proceedings Of the IRE, 21(7), pp. 958-981 (1993). DOI: 10.1109/JRPROC. 1933.227821.
Volume 31, Issue 21
Transactions on Computer Science & Engineering and Electrical Engineering (D)
November and December 2024
Pages 2032-2040
  • Receive Date: 19 January 2021
  • Revise Date: 24 September 2022
  • Accept Date: 17 June 2023