1. Joseph, M., Chong, Z., and Christopher, A.D. "Two dimensional viscous flows between slowly expanding or contracting walls with weak permeability", J. Biomech., 35, pp. 1399-1403 (2002). DOI: 10.1016/s0021-9290(02)00186-0.
2. Von Karman, T. "Uber laminare and turbulente reibung", Zeit. Angew. Math. Mech. (1921). DOI:10.1002/ZAMM.19210010401.
3. Abbas, Z., Rauf, A., Shehzad, S.A., et al. "Cattaneo-Christov heat and mass flux models on time-dependent swirling flow through oscillatory rotating disk", Scientia Iranica., 28, pp. 1329-1341 (2021). DOI: 10.24200/sci.2020.53248.3139.
4. Abbasi, A., Mabood, F., Farooq, W., et al. "Bio convective flow of viscoelastic nano fluid over a convective rotating stretching disk", Int. J. of Heat and Mass Tranf., 119, 104921 (2020). https://doi.org/10.1016/j.icheatmasstransfer. 2020.104921.
5. Mair, K., Salahuddin, T., and Stephen, S.O. "Thermophysical characteristics of liquids and gases near a rotating disk", Chaos Sol. and Fract., 141, 110304 (2020). https://doi.org/10.1016/j.chaos.2020.110304.
6. Muhammad, S., Nazir, U., Chu, Y.M., et al. "Bioconvection phenomenon for the boundary layer flow of magnetohydrodynamic Carreau liquid over a heated disk", Scientia Iranica., 28, pp. 1896-1907 (2021).
7. Adil, S., Farwa, H., and Tasawar, H., "Partial slip in Darcy-Forchheimer carbon nanotubes flow by rotating disk", Int. J. of Heat and Mass Tranfer., 116, 104641 (2020).
https://doi.org/10.1016/j.icheatmasstransfer. 2020.104641.
8. Mamatha, U., Devi, R.L., Raju, C.S., et al. "Magnetohydrodynamic nonlinear thermal convection nano fluid flow over a radiated porous rotating disk with internal heating", J. of Ther. Ana. and Calo., 143, pp. 1973-1984 (2021). https://doi.org/10.1007/s10973- 020-09669-w.
9. Jawad, A., Masood, K., and Latif, A. "Stagnation point flow of Maxwell nano fluid over a permeable rotating disk with heat source/sink", J. of Mol. Liq., 287, 110853 (2019). https://doi.org/10.1016/j.molliq.2019.04.130.
10. Babu, B.H., Rao, P.S., Reddy, M.G., et al. "Numerical modelling of activation energy and hydromagnetic non- Newtonian fluid particle deposition flow in a rotating disc", J. of Pro. mech. Engg., 237, 10.1177 (2021). https://doi.org/10.1177/09544089211045907.
11. Ali, K., Ahmad, A., Ahmad, S., et al. "A numerical approach for analyzing the Electromagnetohydrodynamic flow through a rotating microchannel", Arab. J. of Sci. & Engg., 48, pp. 3765-3781 (2023). https://doi.org/10.1007/s13369-022-07222-5.
12. Syed, M.R., Hyun, M.K., Taseer, M., et al. "Numerical study for slip flow of Reiner-Rivlin nano fluid due to a rotating disk", Int. J. of Heat and Mass Tranfer, 116, 104643 (2020).
https://doi.org/10.1016/j.icheatmasstransfer. 2020.104643.
13. Iqbal, M.F., Ali, K., and Ashraf, M. "Heat and mass transfer analysis in unsteady titanium dioxide nano fluid between two orthogonally moving porous coaxial disks: a numerical study", Cand. J. Phy., 93 (2014). https://doi.org/10.1139/cjp-2014-0243.
14. Iqbal, M.F., Ahmad, S., Ali, K., et al. "Analysis of heat and mass transfer in unsteady nano fluid flow between moving disk with chemical reaction- A numerical study", Heat Transfer Research, pp. 1403-1417 (2018). DOI: 10.1615/HeatTransRes.2018016244.
15. Masood, K., Jawad, A., and Wajid, A. "Thermal analysis for the radiative flow of magnetized maxwell fluid over a vertically moving rotating disk", J. of Ther. Anal. And Calo., 143, pp. 4081-4094 (2021). https://doi.org/10.1007/s10973-020-09322-6.
16. Muhammad, S., Muhammad, B., Muhammad, A.K., et al. "Fractional analysis of viscous fluid flow with heat and mass transfer over a flexible rotating disk", CMES, 123, pp. 377-400 (2020). https://doi.org/10.32604/cmes.2020.08076.
17. Taza, G., Kashif, U., Muhammad, I.A., et al. "Hybrid nano fluid flow within the conical gap between the cone and the surface of a rotating disk", Scientfic Report, 11, 1180 (2021).
https://doi.org/10.1038/s41598-020- 80750-y.
18. Talat, R., Mustafa. M., and Asif, F. "Modeling heat transfer in fluid flow near a decelerating rotating disk with variable fluid properties", Int. J. of Heat and Mass Tranf., 116, 104673 (2020). https://doi.org/10.1016/j.icheatmasstransfer. 2020.104673.
19. Khan, M.R., Pan, K., Khan, A., et al. "Dual solutions for mixed convection flow of SiO2-Al2O3/water hybrid nano fluid near the stagnation point over a curved surface", Physica A: Stat. Mech. App., 547, 123959 (2020). https://doi.org/10.1016/j.physa.2019.123959.
20. Hussain, A., Alshbool, M.H., Abdussattar, A., et al. "A computational model for hybrid nano fluid flow on a rotating surface in the existence of convective condition", Case Studies in Thermal Engg., 26, 101089 (2021). https://doi.org/10.1016/j.csite.2021.101089.
21. Li, Y., Alshbool, M.H., Yu-Pei, K., et al. "Heat and mass transfer in MHD Williamson nano fluid flow over an exponentially porous stretching surface", Case Studies in Thermal Engg., 26, 100975 (2021). https://doi.org/10.1016/j.csite.2021.100975.
22. Khan, M.R., Pan, K., Khan, A., et al. "Comparative study on heat transfer in CNTswater nano fluid over a curved surface", Int. Comm. Heat and Mass Transfer, 116, 104707 (2020).
https://doi.org/10.1016/j.icheatmasstransfer. 2020.104707.
23. Naveen, K., Punith, G., Gireesha, B.J., et al. "Non-Newtonian hybrid nano fluid flow over vertically upward/downward-moving rotating disk in a Darcy-Forchheimer porous medium", The Eur. Phy. J. Sp. Top., 230, pp. 1227-1237 (2021). https://doi.org/10.1140/epjs/s11734-021-00054-8.
24. Zhao, T.H., Khan, M.I., and Chu, Y.M. "Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks", Mathematical Methods in the Spplied Science, pp. 3012-3030 (2023). https://doi.org/10.1002/mma.7310.
25. Ghaffar, M., Ali, K., Yasmin, A., et al. "Unsteady flow between two orthogonally moving porous disks", J. of Mechanics, 31, pp. 147-151 (2015). https://doi.org/10.1017/jmech.2014.90.
26. Shehzad, S.A., Mabood, F., Rauf, A., et al. "Rheological features of non-Newtonian nano fluids flow induced by stretchable rotating disk", Phys. Scr., 96, 035210 (2021). DOI: 10.1088/1402-4896/abd652.
27. Ali, K., Ahmad, A., Ahmad, S., et al. "Peristaltic pumping of MHD flow through a porous channel: biomedical engineering application", Waves in Rand. And Complex Media, 17455030 (2023). https://doi.org/10.1080/17455030.2023.2168085.
28. Shamshuddin, M.D., Akkurt, N., Saeed, A., et al. "Radiation mechanism on dissipative ternary hybrid nanoliquid flow through rotating disk encountered by Hall currents: HAM solution", Alexandria Engg. J., 65, pp. 543-559 (2023). https://doi.org/10.1016/j.aej.2022.10.021.
29. Ahmad, S., Ahmad, A., Ali, K., et al. "Effect of non-Newtonian flow due to thermally-dependent properties over an inclined surface in the presence of chemical reaction, Brownian motion and thermophoresis", Alexandria Engg. J., 60, pp. 4931-4945 (2021). https://doi.org/10.1016/j.aej.2021.03.014.
30. Jawad, R., Rohni, A.M., and Omer, Z. "Unsteady flow of Casson fluid between two orthogonally moving porous disks: A numerical investigation", Communication in Numerical Analysis, 55996581 (2017). DOI:10.5899/2017/CNA-00291.