An effective dispersive liquid-liquid microextraction method for pharmaceutical extraction: Optimization via central composite design

Document Type : Article

Authors

Research Lab for Advanced Separation Processes, Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.

Abstract

In this study, a simple and efficient dispersive liquid-liquid microextraction procedure (DLLME) was developed to remove diclofenac sodium (DF) from water samples. Various parameters such as diclofenac concentration in aqueous phase (10-50 mg/L), process time (2-10 min), extraction solvent concentration (0.005-0.025 M), and centrifuge speed (1000-5000 rpm) were investigated. The experimental design was performed by the Response Surface Methodology (RSM) according to the central composite design (CCD) to reduce the number of experiments and determine the optimal extraction conditions. The effect of the single and simultaneous operational parameters was evaluated. In this regard, the extraction concentration of 0.01 M, the initial diclofenac concentration in aqueous phase 20 mg/L, the rotation speed of the centrifuge 4000 rpm, and the residence time of 8 min were obtained as the optimum operating conditions. According to the other studies and available findings, the ratio of two-phase organic and aqueous discharges (Qorg⁄Qaq) was set to 1:9. The diclofenac extraction from the aqueous phase was 77.91% in optimum operating conditions.

Keywords


References:
1. Ansarimehr, M., Rahbar kelishami, A., and Shayesteh, H. "Evaluation of  flow patterns maps of diclofenac sodium solvent extraction in micro fluidic systems based on dimensionless numbers", J. Appl. Res. chemisry (2022). https://doi.org/10.30495/jacr. 2022.688383.
2. Xie, J., Liu, M., He, M., et al. "Ultra-efficient adsorption of diclofenac sodium on fish-scale biochar functionalized with H3PO4 via synergistic mechanisms", Environ. Pollut., 322, p. 121226 (2023). https://doi.org/10.1016/j.envpol. 2023.121226.
3. Shayesteh, H., Nodehi, R., and Rahbar-Kelishami, A. "Trimethylamine functionalized clay for highly efficient removal of diclofenac from contaminated water: Experiments and theoretical calculations", Surfaces and Interfaces, 20, 100615  (2020). https://doi.org/10.1016/ j.surfin.2020.100615.
4. De Azevedo, C.F., Machado, F.M., De Souza, N.F., et al. "Comprehensive adsorption and spectroscopic studies on the interaction of carbon nanotubes with diclofenac anti-in ammatory", Chem. Eng. J., 454, 140102 (2023). https://doi.org/10.1016/ j.cej.2022.140102.
5. Zhang, M., Wang, W., Zhang, Q., et al. "Pore surface engineering of covalent organic frameworks by simultaneously appending amine group and tailoring pore size for efficient adsorption of diclofenac sodium", Chem. Eng. J., 459, 141561 (2023). https://doi.org/10.1016/ j.cej.2023.141561.
6. Sathishkumar, P., Meena, R.A.A., Palanisami, T., et al. "Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review", Sci. Total Environ., 698, p. 134057 (2020). https://doi.org/10.1016/j. scitotenv.2019.134057.
7. Vieno, N. and Sillanpaa, M. "Fate of diclofenac in municipal wastewater treatment plant - A review", Environ. Int., 69, pp. 28-39 (2014). https://doi.org/10.1016/j.envint.2014.03.021.
8. Zhao, Y., Liu, F., and Qin, X. "Adsorption of diclofenac onto goethite: Adsorption kinetics and effects of pH", Chemosphere, 180, pp. 373-378 (2017). https://doi.org/10.1016/ j.chemosphere.2017.04.007.
9. Zhou, L., Dai, S., Xu, S., et al. "Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants", Appl. Catal. B Environ., 291(February), 120019 (2021). https://doi.org/10.1016/ j.apcatb.2021.120019.
10. Areeb, A., Yousaf, T., Murtaza, M., et al. "Green photocatalyst Cu/NiO doped zirconia for the removal of environmental pollutants", Mater. Today Commun., 28, p. 102678 (2021). https://doi.org/10.1016/ j.mtcomm.2021.102678.
11. Alcantara, G.K.S., Calixto, L.A., Rocha, B.A., et al. "A fast DLLME-LC-MS/MS method for risperidone and its metabolite 9-hydroxyrisperidone determination in plasma samples for therapeutic drug monitoring of patients", Microchem. J., 156, 104894 (2020). https://doi.org/10.1016/ j.microc.2020.104894.
12. Mohammadi, M., Khosravi, S., Nili-Ahmadabadi, A., et al. "Rapid determination of ampyra in urine samples using dispersive liquid-liquid microextraction coupled with ion mobility spectrometry", J. Pharm. Biomed. Anal., 224, 115185 (2023). https://doi.org/10.1016/ j.jpba.2022.115185.
13. Perisic, D.J., Gilja, V., Stankov, M.N., et al. "Removal of diclofenac from water by zeolite-assisted advanced oxidation processes", J. Photochem. Photobiol. A Chem., 321, pp. 238-247 (2016). https://doi.org/10.1016/j.jphotochem. 2016.01.030.
14. Davarnejad, R. and Sabzehei, M. "Sodium diclofenac removal from a pharmaceutical wastewater by electro- Fenton process", Sep. Sci. Technol., 54(14), pp. 2294-2303 (2019). https://doi.org/10.1080/01496395. 2018.1540639.
15. Oral, O. and Kantar, C. "Diclofenac removal by pyrite- Fenton process: Performance in batch and fixedbed continuous  flow systems", Sci. Total Environ., 664, pp. 817-823 (2019). https://doi.org/10.1016/j. scitotenv.2019.02.084.
16. Cantarella, M., Carroccio, S.C., Dattilo, S., et al. "Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water", Chem. Eng. J., 367, pp. 180-188 (2019).https://doi.org/10.1016/ j.cej.2019.02.146.
17. Ali, I., Alharbi, O.M.L., ALOthman, Z.A., et al. "Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water", Int. J. Biol. Macromol., 132, pp. 244-253 (2019). https://doi.org/10.1016/j.ijbiomac. 2019.03.211.
18. Xu, S., Zhu, Q., Xu, S., et al. "The phase behavior of n-ethylpyridinium tetra uoroborate and sodiumbased salts ATPS and its application in 2-chlorophenol extraction", Chinese J. Chem. Eng., 33, pp. 76-82 (2021). https://doi.org/10.1016/j.cjche. 2020.07.024.
19. Yamini, Y., Rezazadeh, M., and Seidi, S. "Liquidphase microextraction - The different principles and configurations", TrAC - Trends Anal. Chem., 112, pp. 264-272 (2019). https://doi.org/10.1016/j.trac. 2018.06.010.
20. Reinsdorf, M. and Triplett, J.E. "A Review of Reviews", Price Index Concepts Meas., 149, pp. 17-84(2013). https://doi.org/10.7208/chicago/978022 6148571.003.0002.
21. Sarafraz-Yazdi, A. and Amiri, A. "Liquid-phase microextraction", TrAC Trends Anal. Chem., 29(1), pp. 1-14 (2010). https://doi.org/10.1016/j.trac. 2009.10.003.
22. Liu, H. and Dasgupta, P.K. "Analytical chemistry in a drop", TrAC - Trends Anal. Chem., 15(9), pp. 468-475 (1996). https://doi.org/10.1016/ S0165-9936(96)00065-9.
23. Arthur, C.L. and Pawliszyn, J. "Solid phase microextraction with thermal desorption using fused silica optical fibers", Anal. Chem., 62(19), pp. 2145-2148 (1990). https://doi.org/10.1021/ ac00218a019.
24. Dadfarnia, S. and Haji Shabani, A.M. "Recent development in liquid phase microextraction for determination of trace level concentration of metals- A review", Anal. Chim. Acta, 658(2), pp. 107-119 (2010). https://doi.org/10.1016/ j.aca.2009.11.022.
25. Lee, J., Lee, H.K., Rasmussen, K.E., et al. "Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: A review", Anal. Chim. Acta, 624(2), pp. 253-268 (2008). https://doi.org/10.1016/ j.aca.2008.06.050.
26. Pinto, M.I., Sontag, G., Bernardino, R.J., et al. "Pesticides in water and the performance of the liquid-phase microextraction based techniques. A review", Microchem. J., 96(2), pp. 225-237 (2010). https://doi.org/10.1016/ j.microc.2010.06.010.
27. Guo, J., Xu, S., Qin, Y., et al. "The temperature influence on the phase behavior of ionic liquid based aqueous two-phase systems and its extraction efficiency of 2-chlorophenol", Fluid Phase Equilib., 506, 112394 (2020). https://doi.org/10.1016/j.
uid.2019.112394.
28. Quigley, A., Cummins, W., and Connolly, D. "Dispersive liquid-liquid microextraction in the analysis of milk and dairy products: A review", J. Chem., 2016, pp. 1-12 (2016). https://doi.org/10.1155/2016/ 4040165.
29. Albert-Garcia, J.R., Icardo, M.C., and Calatayud, J.M. "Analytical strategy photodegradation/ chemiluminescence/continuous- flow multicommut -ation methodology for the determination of the herbicide Propanil", Talanta, 69(3), pp. 608-614 (2006). https://doi.org/10.1016/ j.talanta.2005.10.044.
30. Farahani, H., Norouzi, P., Dinarvand, R., et al.  Development of dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as a simple, rapid and highly sensitive method for the determination of phthalate esters in water samples", J. Chromatogr. A., 1172(2), pp. 105-112 (2007). https://doi.org/10.1016/ j.chroma.2007.10.001.
31. Maia, G.S., de Andrade, J.R., da Silva, M.G.C., et al. "Adsorption of diclofenac sodium onto commercial organoclay: Kinetic, equilibrium and thermodynamic study", Powder Technol., 345, pp. 140-150 (2019). https://doi.org/10.1016/ j.powtec.2018.12.097.
32. Jalilvand, P., Rahbar-Kelishami, A., Mohammadi, T., et al. "Optimizing of malachite green extraction from aqueous solutions using hydrophilic and hydrophobic nanoparticles", J. Mol. Liq., 308, p. 113014 (2020). https://doi.org/10.1016/ j.molliq.2020.113014.
33. Heidari, B.S., Oliaei, E., Shayesteh, H., et al. "Simulation of mechanical behavior and optimization of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design", J. Mech. Behav. Biomed. Mater., 65, pp. 160-176 (2017). https://doi.org/10.1016/ j.jmbbm.2016.08.008.
34. Sampath, U., Gunathilake, T.M., Ching, Y.C., et al. "pH-responsive poly(lactic acid)/sodium carboxymethyl cellulose film for enhanced delivery of curcumin in vitro", J. Drug Deliv. Sci. Technol., 58, p. 101787 (2020). https://doi.org/10.1016/ j.jddst.2020.101787.
35. Shayesteh, H., Norouzbeigi, R., and Rahbar- Kelishami, A. "Hydrothermal facile fabrication of superhydrophobic magnetic nanospiky nickel wires: Optimization via statistical design", Surfaces and Interfaces, 26, p. 101315 (2021). https://doi.org/10.1016/ j.surfin.2021.101315.
36. Farahani, A., Rahbar-Kelishami, A., and Shayesteh, H. "Micro fluidic solvent extraction of Cd(II) in parallel  flow pattern: Optimization, ion exchange,and mass transfer study", Sep. Purif. Technol., 258(Ii), p. 118031 (2021). https://doi.org/10.1016/
j.seppur.2020.118031.
37. Raji, M., Abolghasemi, H., Safdari, J., et al. "Nanofluid-based emulsion liquid membrane for selective extraction and separation of dysprosium", Int. J. Chem. Mol. Eng., 11(12), pp. 787-792 (2017). https://zenodo.org/doi/10.5281/ zenodo.1314460.
38. Ahmad, A.L., Kusumastuti, A., Derek, C.J.C., et al. "Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization", Chem. Eng. J., 171(3), pp. 870-882 (2011). https://doi.org/10.1016/ j.cej.2011.05.102.
39. Lende, A.B. and Kulkarni, P.S. "Selective recovery of tungsten from printed circuit board recycling unit wastewater by using emulsion liquid membrane process", J. Water Process Eng., 8, pp. 75-81 (2015). https://doi.org/10.1016/ j.jwpe.2015.09.003.
40. Ghanbarian, B., Hunt, A.G., Ewing, R.P., et al. "Tortuosity in porous media: a critical review", Soil Sci. Soc. Am. J., 77(5), pp. 1461-1477 (2013). https://doi.org/10.2136/ sssaj2012.0435.
41. Kulkarni, P.S., Tiwari, K.K., and Mahajani, V.V. "Membrane stability and enrichment of nickel in the liquid emulsion membrane process", J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol., 75(7), pp. 553-560 (2000). https://doi.org/10.1002/1097-4660(200007)75:7%3 C553::AID-JCTB252%3E3.0.CO;2-I.