References:
1. Auliciems, A. and Szokolay, S.V. "PLEA Handbook - Thermal comfort", In PLEA International, 3, pp. 1-68 (2007).
2. Vendrik, A.J. and Vos, J.J. "A method for the measurement of the thermal conductivity of human skin", J Appl Physiol, 11(2), pp. 211-215 (1957). DOI: 10.1152/jappl.1957.11.2.211.
3. Stoll, A.M., Chianta, M.A., and Piergallini, J.R. "Thermal conduction effects in human skin", Aviat Space Environ Med, 50(8), pp. 778-787 (1979). PMID: 496745.
4. Ungar, E.K. and Stroud, K.J. "A new approach to defining human touch temperature standards", 40th International Conference on Environmental Systems, ICES 2010, 1, pp. 1-10 (2010).
5. ISO, "Ergonomics of the thermal environment- Methods for the assessment of human responses to contact with surfaces-Part 1: Hot surfaces", (2006).
6. Effting, C., Alarcon, O.E., Guths, S., et al. "Influence of porosity on thermal properties of ceramic floor tiles", IX World congress on ceramic tile quality (Qualicer), pp. 409-420 (2006).
7. Pereira, F.R., Abreu, L.P., Silva, R.A. A., et al. "Development of ceramic coating with thermal comfort on contact", Qualicer, 1, pp. 1-4 (2010).
8. Garcia, E., De Pablos, A., Bengoechea, M.A., et al. "Thermal conductivity studies on ceramic floor tiles", Ceram Int, 37(1), pp. 369-375 (2011). DOI: 10.1016/j.ceramint.2010.09.023.
9. Melo, A.C., Costa e Silva, A.J., Torres, S.M., et al. "Influence of the contact area in the adherence of mortar - Ceramic tiles interface", Constr Build Mater, 243, 118274 (2020). DOI: 10.1016/j.conbuildmat.2020.118274.
10. Busch, P.F. and Franaa Holanda, J.N. "Potential use of coffee grounds waste to produce dense/porous bilayered red floor tiles", Open Ceramics, 9, p. 100204 (2022). DOI: 10.1016/j.oceram.2021.100204.
11. Novais, R.M., Ascensao, G., Seabra, M.P., et al. "Lightweight dense/porous PCM-ceramic tiles for indoor temperature control", Energy Build, 108, pp. 205-214 (2015). DOI: 10.1016/j.enbuild.2015.09.019.
12. Santamouris, M., Synnefa, A., and Karlessi, T., "Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions", Solar Energy, 85(12), pp. 3085- 3102 (2011). DOI: 10.1016/j.solener.2010.12.023.
13. Pezeshki, Z., Soleimani, A., Darabi, A., et al. "Thermal transport in: Building materials", Constr Build Mater, 181, pp. 238-252 (2018). DOI:10.1016/j.conbuildmat.2018.05.230.
14. Shojaeefard, M.H. and Tafazzoli Aghvami, K. "Numerical investigation into thermal contact conductance between linear and curvilinear contacts", Scientia Iranica, 26(3B), pp. 1293-1298 (2019). DOI: 10.24200/SCI.2018.5238.1160.
15. Shojaeefard, M.H. and Tafazzoli Aghvami, K. "Mathematical modeling of thermal contact resistance for different curvature contacting geometries using a robust approach", Scientia Iranica, 26(5B), pp. 2854-2864. (2019). DOI: 10.24200/SCI.2018.50771.1856.
16. Carlini, M., Castellucci, S., Ceccarelli, I., et al. "Study of a thermal dispersion in buildings and advantages of ceramic coatings for the reduction of energy expenditure", Energy Reports, 6, pp. 116-128 (2020). DOI: 10.1016/j.egyr.2020.08.031.
17. Abrahem, S.A., Hassan, S.A., and Khamees, W.A. "Impact of facade material of mass housing on outdoor thermal comfort in hot-arid climate", IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing (2020).
18. Gomez, R.S., Porto, T.R.N., Magalhaes, H.L.F., et al. "Transient thermal analysis in an intermittent ceramic kiln with thermal insulation: A theoretical approach", Advances in Materials Science and Engineering, 2020(1), p. 6476723 (2020). DOI:10.1155/2020/6476723.
19. Silva, S.K.B.M., Araujo, C.J., Delgado, J.M.P.Q., et al. "Heat and mass transfer in structural ceramic blocks: An analytical and phenomenological approach", Energies (Basel) , 15(19), p. 7150 (2022). DOI: 10.3390/en15197150.
20. Xue, F. and Zhao, J. "Building thermal comfort research based on energy-saving concept", Advances in Materials Science and Engineering, 2021(1), p. 7132437 (2021). DOI: 10.1155/2021/7132437.
21. Colmenares, A.P., Sanchez, J., and Diaz, C.X. "Comparative thermal analysis of extruded ceramic products between multi perforated brick and modified bricks in cells distribution", J Phys Conf Ser, Institute of Physics Publishing, 1386, p. 012130 (2019). DOI: 10.1088/1742-6596/1386/1/012130.
22. Shariff, K.A., Juhari, M.S., Chan, L.W.L., et al. "Effect of different firing temperature on thermal conductivity of ceramic tiles", Materials Science Forum, Trans Tech Publications Ltd, pp. 665-671 (2020). DOI: 10.4028/www.scientific.net/MSF.1010.665.
23. Flores Cuautle, J.J.A., Lara Hernandez, G., Orea, A.C., et al. "Study of thermal properties on the different layers composing a commercial ceramic tile", Revista Mexicana De Fisica, 65(2 Mar-Apr), pp. 124- 127 (2019). DOI: 10.31349/revmexfis.65.124.
24. Pan, M., Li, X., Wu, X., et al. "Preparation of thermal insulation materials based on granite waste using a high-temperature micro-foaming method", Journal of Asian Ceramic Societies, 10(1), pp. 223-229 (2022). DOI: 10.1080/21870764.2022.2034713.
25. Kemaneci, H.I "Thermal comfort and energy analysis in ceramic tiles", Dumlupinar University (2019).
26. Frank P.I., David P.D., Theodore L.B., et al. Fundamentals of Heat and Mass Transfer: Sixth Edition, John Wiley and Sons (2019).
27. James, W.D., Berger, T.G., Elston, D.M., et al. Andrews' Diseases of the Skin: Clinical Dermatology, 10th Ed., Saunders Elsevier, Philadelphia (2006).
28. ScienceProg "Skin Structure Diagram", https://scienceprog.com/histological-skin- structurediagram/.
29. Kanitakis, J. "Anatomy, histology and immunohistochemistry of normal human skin", European Journal of Dermatology, 12(4) (2002). PMID: 12095893.
30. Cranston, W.I. "Thermoregulation and the Skin", Handbook of Experimental Pharmacology, pp. 213-221 (1989).
31. Romanovsky, A.A. "Skin temperature: Its role in thermoregulation", Acta Physiologica, 210(3), pp. 498- 507 (2014). DOI: 10.1111/apha.12231.
32. Cohen, M.L. "Measurement of the thermal properties of human skin. A review", Journal of Investigative Dermatology, 69(3), pp. 333-338 (1977). DOI:10.1111/1523-1747.ep12507965.
33. Lipkin, M. and Hardy, J.D. "Measurement of some thermal properties of human tissues", J Appl Physiol, 7(2), pp. 212-217 (1954). DOI: 10.1152/jappl.1954.7.2.212.
34. Houghton F.C. and Yaglou, C.P. "Determination of the comfort zone", J. Am. Soc. Heating and Ventilation in England, 29, pp. 165-176 (1923).
35. Dow Packaging and Specialty Plastics Product Data Sheet, "SURLYNTM 1706" https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/914/914-28001-01-surlyn-1706- ionomer-tds.pdf.