QQCAsim: A new simulation tool for quaternary logic in QCA technology

Document Type : Research Article

Authors

1 Department of Electrical Engineering, CT. C., Islamic Azad University, Tehran, Iran

2 - Department of Electrical Engineering, CT. C., Islamic Azad University, Tehran, Iran. - Intelligent Power System Research Center, CT. C., Islamic Azad University, Tehran, Iran.

Abstract

Quantum-dot Cellular Automata (QCA) technology is one of the candidate technologies to replace CMOS in Multi-Valued Logic (MVL) circuit designs, to overcome the problems of binary systems. One of the advantages of MVL systems is that they can process more information. Some techniques are essential to simulate and evaluate new multi-valued designs and their performance. This article introduces a new software platform for simulating Quaternary QCA (QQCA) circuits that can be run on computers on Windows and Linux computers is powerful and can run simulations with high accuracy. The presented tool provides the results in two formats. The first format is waveform and the second one is truth table. The presented software has a user-friendly interface that allows users to easily implement their QQCA circuits. Furthermore, the electrostatic energies for all cases in which the basic gates assume four values are determined and the step-by-step simulation process is described. The basic NOT, AND, and OR gates have already been simulated and validated by the relevant software.

Keywords

Main Subjects


References: 
1. Safoev, N. and J.-C. Jeon. "Design of highperformance QCA incrementer/decrementer circuit based on adder/subtractor methodology”, Microprocessors and Microsystems, 72, 102927 (2020). https://doi.org/10.1016/j.micpro.2019.102927.
2. Sharifi, F., Moaiyeri, M.H., Navi, K., et al. "Ultralow- power carbon nanotube FET-based quaternary logic gates”, International Journal of Electronics, 103(9), pp. 1524-1537 (2016). https://doi.org/10.1080/21681724.2016.1138506.
3. Nayeri, M. and Keshavarzian, P. "A novel design of quaternary inverter gate based on GNRFET”, International Journal of Nanoscience and Nanotechnology, 15(3), pp. 211-217 (2019). https://www.ijnnonline.net/article_36253_5469f735c 62b94520f48dbc0399b6b34.pdf.
4. Akbari-Hasanjani, R., Sabbaghi-Nadooshan, R., and Tanhayi, M.R. "New polarization and power calculations with error elimination in ternary QCA”, Computers and Electrical Engineering, 96, p. 107557 (2021). https://doi.org/10.1016/j.compeleceng.2021.107557.
5. Mohammadi Mohaghegh, S., Sabbaghi-Nadooshan R., and Mohammadi, M. "Design of a ternary QCA multiplier and multiplexer: a model-based approach”, Analog Integrated Circuits and Signal Processing, 101, pp. 23-29 (2019). https://doi.org/10.1007/s10470-019-01465-3.
6. Lent, C.S., Tougaw, P.D., Porod, W., et al. "Quantum cellular automata”, Nanotechnology, 4(1), p. 49 (1993). https://doi.org/10.1088/0957-4484/4/1/004.
7. Shalamzari, Z.D., Zarandi, A.D., and Reshadinezhad, M.R. "Newly multiplexer-based quaternary half-adder and multiplier using CNTFETs”, AEU-International Journal of Electronics and Communications, 117, p. 153128 (2020). https://doi.org/10.1016/j.aeue.2020.153128.
8. Akbari-Hasanjani, R. and Sabbaghi-Nadooshan, R."Design and simulation of innovative QCA quaternary logic gates”, Advanced Theory and Simulations, 4(9), 2100069 (2021). https://doi.org/10.1002/adts.202100069.
9. Akbari-Hasanjani, R. and Sabbaghi-Nadooshan, R. "New design of binary to ternary converter”, IETE Journal of Research, 69(4), pp. 2212-2223 (2023). https://doi.org/10.1080/03772063.2021.1886881.
10. Haghparast, M. and Dousttalab, N. "Design of new reversible quaternary flip-flops”, International Journal of Quantum Information, 15(04), p. 1750024 (2017). https://doi.org/10.1142/S0219749917500241.
11. Ahmadpour, S.-S. and Mosleh, M. "New designs of fault-tolerant adders in quantum-dot cellular automata”, Nano Communication Networks, 19, pp. 10-25 (2019). https://doi.org/10.1016/j.nancom.2018.11.001.
12. Orlov, A.O., Amlani, I., Bernstein, G., et al. "Realization of a functional cell for quantum-dot cellular automata”, Science, 277(5328), pp. 928-930 (1997). https://doi.org/10.1126/science.277.5328.928.
13. Arjmand, M.M., Soryani, M., and Navi, K. "Coplanar wire crossing in quantum cellular automata using a ternary cell”, IET Circuits, Devices and Systems, 7(5), pp. 263-272 (2013). https://doi.org/10.1049/iet-cds.2012.0366.
14. Babaie, S., Sadoghifar, A., and Bahar, A.N. "Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA)”, IEEE Transactions on Circuits and Systems II: Express Briefs 66(6), pp. 963-967 (2018). https://doi.org/10.1109/TCSII.2018.2873797.
15. Sasamal, T.N., Singh, A.K. and Mohan, A. "An efficient design of quantum-dot cellular automata based 5-input majority gate with power analysis”, Microprocessors and Microsystems, 59, pp. 103-117 (2018). https://doi.org/10.1016/j.micpro.2018.03.002.
16. Bajec, I.L., Zimic, N., and Mraz, M. "The ternary quantum-dot cell and ternary logic”, Nanotechnology, 17(8), p. 1937 (2006). https://doi.org/10.1088/0957-4484/17/8/023.
17. Pecar, P., Janez, M., Zimic, N., et al. “The ternary quantum-dot cellular automata memorizing cell”, In  2009 IEEE Computer Society Annual Symposium on  VLSI, pp. 223-228 (IEEE, 2009). https://doi.org/10.1109/ISVLSI.2009.32.
18. Rahmani, Y., Heikalabad, S.R., and Mosleh, M. "Design of a new multiplexer structure based on a new fault-tolerant majority gate in quantum-dot cellular automata”, Optical and Quantum Electronics, 53, pp. 1-19 (2021). https://doi.org/10.1007/s11082-021-03179-1.
19. Safaiezadeh, B., Mahdipour, E., Haghparast, M., et al. "Design and simulation of efficient combinational circuits based on a new XOR structure in QCA technology”, Optical and Quantum Electronics, 53, pp. 1-16 (2021). https://doi.org/10.1007/s11082-021-03294-z.
20. Seyedi, S., Otsuki, A., and Navimipour, N.J. "A new cost-efficient design of a reversible gate based on a nano-scale quantum-dot cellular automata technology”, Electronics, 10(15), 1806 (2021). https://doi.org/10.3390/electronics10151806.
21. Sheibani, H. and Rahimi, E. "Single-electron fault tolerance in quantum cellular automata majority gate”, Journal of Circuits, Systems and Computers, 30(09), 2150168 (2021). https://doi.org/10.1142/S0218126621501681.
22. Zahmatkesh, M., Tabrizchi, S., Mohammadyan, S., et al. "Robust coplanar full adder based on novel inverter in quantum cellular automata”, International Journal of Theoretical Physics, 58, pp. 639-655 (2019). https://doi.org/10.1007/s10773-018-3961-6.
23. Ardesi, Y., Pulimeno, A., Graziano, M., et al. "Effectiveness of molecules for quantum cellular automata as computing devices”, Journal of Low Power Electronics and Applications, 8(3), p. 24 (2018). https://doi.org/10.3390/jlpea8030024.
24. Safaiezadeh, B., Mahdipour, E., Haghparast, M., et al. "Novel design and simulation of reversible ALU in quantum dot cellular automata”, The Journal of Supercomputing, 78(1), pp. 868-882 (2022). https://doi.org/10.1007/s11227-021-03933-y.
25. Peng, F., Zhang, Y., Kuang, R., et al. "Spars: A full  flow quantum-dot cellular automata circuit design tool”, IEEE Transactions on Circuits and Systems II: Express Briefs, 68(4), pp. 1233-1237 (2020). https://doi.org/10.1109/TCSII.2020.3039532.
26. Macucci, M., Gattobigio, M., Bonci, L., et al. "A QCA cell in silicon-on-insulator technology: theory and experiment”, Superlattices and Microstructures, 34(3- 6), pp. 205-211 (2003). https://doi.org/10.1016/j.spmi.2004.03.010.
27. Hofmann, M., Weidenfeller, L., Supreeti, S., et al. "Mix-and-match lithography and cryogenic etching for NIL template fabrication”, Microelectronic  Engineering, 224, p. 111234 (2020). https://doi.org/10.1016/j.mee.2020.111234.
28. Gao, P., Pu, M., Ma, X., et al. "Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm”, Nanoscale, 12(4), pp. 2415-2421 (2020). https://doi.org/10.1039/C9NR08153D.
29. Chen, W. and Ahmed, H. "Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist”, Applied physics letters, 62(13), p. 1499-1501(1993). https://doi.org/10.1063/1.109609.
30. Päivänranta, B., Langner, A., Kirk, E., et al. "Sub-10 nm patterning using EUV interference lithography”, Nanotechnology, 22(37), p. 375302 (2011). https://doi.org/10.1088/0957-4484/22/37/375302.
31. Akbari-Hasanjani, R. and Sabbaghi-Nadooshan, R. "Innovation Quinary and n-Value toward Fuzzy Logic QCA Cell Design”, Advanced Theory and Simulations, 5(2), p. 2100304 (2022). https://doi.org/10.1002/adts.202100304. 
Volume 32, Issue 5
Transactions on Computer Science & Engineering and Electrical Engineering
March and April 2025 Article ID:6789
  • Receive Date: 13 May 2022
  • Revise Date: 03 August 2022
  • Accept Date: 08 May 2023