References:
1. Khanongnuch, R., Di Capua, F., Lakaniemi, A.M., et al. "Transient-state operation of an anoxic biotrickling filter for H2S removal", J. Hazard. Mater., 377, pp. 42-51 (2019). DOI: 10.1016/j.jhazmat.2019.05.043.
2. Fu, L., Ren, Zh., Si, W., et al. "Research progress on CO2 capture and utilization technology", J. CO2 Util., 66, 102206 (2022). DOI: 10.1016/j.jcou.2022.102260.
3. Rezakazemi, M., Heydari, I., and Zhang, Zh. "Hybrid systems: Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas", J. CO2 Util., 18, pp. 362-369 (2017). DOI: 10.1016/j.jcou.2017.02.006.
4. Castro-Munoz, R., Ahmad, M.Z., Malankowska, M., et al. "A new relevant membrane application: CO2 direct air capture (DAC)", Chem. Eng. J., 446(2), 137047 (2022). DOI: 10.1016/j.cej.2022.137047.
5. Cheng, X., Pan, F., Wang, M., et al. "Hybrid membranes for pervaporation separations", J. Memb. Sci., 541, pp. 329-346 (2017). DOI: 10.1016/j.memsci.2017.07.009.
6. Zakariya, Sh., Yeong, Y.F., Jusoh, N., et al. "Performance of multilayer composite hollow membrane in separation of CO2 from CH4 in mixed gas conditions", Polymers, 14(7), p. 1480 (2022). DOI: 10.3390/polym14071480.
7. Dai, Y., Niu, Zh., Luo, W., et al. "A review on the recent advances in composite membranes for CO2 capture processes", Sep. Purif. Technol., 307, p. 122752 (2023). DOI: 10.1016/j.seppur.2022.122752.
8. Momeni, M., Elyasi Kojabad, M., Khanmohammadi, S., et al. "Impact of support on the fabrication of poly (ether-b-amide) composite membrane and economic evaluation for natural gas sweetening", J. Nat. Gas Sci. Eng., 62, pp. 236-246 (2019). DOI: 10.1016/j.jngse.2018.12.014.
9. Elyasi Kojabad, M. and Momeni, M. "Fabrication of PEBA polymeric membrane layers on nanostructure PSF supports to separation of CO2 from N2 and CH4", J. Appl. Chem., 15(54), pp. 101-112 (2020). DOI: 10.22075/chem.2020.16150.1546.
10. Elyasi Kojabad, M., Babaluo, A.A., Tavakoli, A., et al. "A novel high-performance facilitated transport membrane by simultaneously using semi-mobile and fixed carriers for CO2/N2 separation", Process Saf. Environ. Prot., 156, pp. 304-314 (2021).DOI: 10.1016/j.psep.2021.10.017.
11. Sadrzadeh, M., Amirilargani, M., Shahidi, K., et al. "Gas permeation through a synthesized composite PDMS/PES membrane", J. Memb. Sci., 342, pp. 236- 250 (2009). DOI: 10.1016/j.memsci.2009.06.047.
12. Elyasi Kojabad, M., Nouri, M., Babaluo, A.A., et al. "Alumina-PEBA/PSf Multilayer composite membranes for CO2 separation: experimental and molecular simulation studies", Sci. Iran., 30(6), pp. 2043- 2055 (2022). DOI: 10.24200/sci.2022.57717.5383.
13. Afshoun, H.R., Chenar, M.P., Ismail, A.F., et al. "Effect of support layer on gas permeation properties of composite polymeric membranes", Korean J. Chem. Eng., 34, pp. 3178-3184 (2017). DOI: 10.1007/s11814-017-0215-x.
14. Maghsoudi, H. and Soltanieh, M. "Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane", J. Memb. Sci., 470, pp. 159-165 (2014). DOI: 10.1016/j.memsci.2014.07.025.
15. Li, S., Falconer, J.L., and Noble, R.D. "SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio", Microporous Mesoporous Mater., 110, pp. 310- 317 (2008). DOI: 10.1016/j.micromeso.2007.06.016.
16. Hong, S., Kim, D., Jeong, Y., et al. "Healing of microdefects in SSZ-13 membranes via filling with dye molecules and its effect on dry and wet CO2 separations", Chem. Mater., 30, pp. 3346-3358 (2018). DOI: 10.1021/acs.chemmater.8b00757.
17. Vaezi, M.J., Babaluo, A.A., and Maghsoudi, H. "Synthesis, modification and gas permeation properties of DD3R zeolite membrane for separation of natural gas impurities (N2 and CO2)", J. Nat. Gas Sci. Eng., 52, pp. 423-431 (2018). DOI: 10.1016/j.jngse.2018.01.018.
18. Wang, B., Hu, N., Wang, H., et al. "Improved AlPO-18 membranes for light gas separation", J. Mater. Chem. A, 3, pp. 12205-12212 (2015). DOI: 10.1039/C5TA01260K.
19. Aydani, A., Brunetti, A., Maghsoudi, H., et al. "CO2 separation from binary mixtures of CH4, N2, and H2 by using SSZ-13 zeolite membrane", Sep. Purif. Technol., 256, p. 17796 (2021). DOI: 10.1016/j.seppur.2020.117796.
20. Sandstrom, L., Sjoberg, L., and Hedlund, J. "Very high flux MFI membrane for CO2 separation", J. Memb. Sci., 380, pp. 232-240 (2011). DOI: 10.1016/j.memsci.2011.07.011.
21. Kida, K., Maeta, Y., and Yogo, K. "Preparation and gas permeation properties on pure silica CHA-type zeolite membranes", J. Memb. Sci., 522, pp. 363-370 (2017). DOI: 10.1016/j.memsci.2016.09.002.
22. Isa, M.A. and Halim, M.H. "Cation-exchanged Na-Y Zeolite: Effect of temperature and ion concentration to membrane performance", J. Phys. Conf. Ser., 1349, p. 012072 (2019). DOI: 10.1088/1742-6596/1349/1/012072.
23. Nazir, L.S.M., Yeong, Y.F., and Chew, T.L. "Methods and synthesis parameters affecting the formation of FAU type zeolitemembrane and its separation performance: a review", J. Asian Ceram. Soc., 8(3), pp. 553-571 (2020). DOI: 10.1080/21870764.2020.1769816.
24. Kusakabe, K., Kuroda, T., Uchino, K., et al. "Gas permeation properties of ion-exchanged faujasite-type zeolite membranes", AIChE J., 45, pp. 1220-1226 (2004). DOI: 10.1002/aic.690450608.
25. Kumar, S., Srivastava, R., and Koh, J. "Utilization of zeolites as CO2 capturing agents: Advances and future perspectives", J. CO2 Util., 41, p. 101251 (2020). DOI: 10.1016/j.jcou.2020.101251.
26. Guo, Y., Xiang, B., Zhao, B., et al. "Removal of H2S from simulated blast furnace gas by adsorption over metal-modified 13X zeolite", Fuel, 338, p. 127261 (2023). DOI: 10.1016/j.fuel.2022.127261.
27. Chen, Y., Wang, B., Zhao, L., et al. "New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas", J. Memb. Sci., 495, pp. 415-423 (2015). DOI: 10.1016/j.memsci.2015.08.045.
28. Treacy, M.M.J. and Higgins, J.B., Collection of Simulated XRD Powder Patterns for Zeolites, 5th Edn., Elsevier, New York, USA (2007). DOI: 10.1016/B978-0-444-53067-7.X5470-7.
29. Karamouz, F., Maghsoudi, H., and Yegani, R. "Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation", J. Nat. Gas Sci. Eng., 35, pp. 980-985 (2016). DOI: 10.1016/j.jngse.2016.09.036.
30. Elyasi Kojabad, M., Momeni, M., Babaluo, A.A., et al. "PEBA/PSf multilayer composite membranes for CO2 separation: Influence of dip coating parameters", Chem. Eng. Technol., 43, pp. 1451-1460 (2020). DOI: 10.1002/ceat.201900262.
31. Medeiros-Costa, I.C., Laroche, C., Perez-Pellitero, J., et al. "Characterization of hierarchical zeolites: Combining adsorption/intrusion, electron microscopy, diffraction and spectroscopic techniques", Microporous Mesoporous Mater., 287, pp. 167-176 (2019). DOI: 10.1016/j.micromeso.2019.05.057.
32. Singh, H.K.K., Amin, K., and Arshad, S.E. "Ion exchange capacity of zeolite A with zinc nitrate and its antimicrobial activity", Pure App. Chem., 93(1), pp. 39-46 (2021). DOI: 10.1515/pac-2019-0811.
33. Ardestani, M.A., Babaluo, A.A., Peyravi, M., et al. "Fabrication of PEBA/ceramic nanocomposite membranes in gas sweetening", Desalination, 250, pp. 1140-1143 (2010). DOI: 10.1016/j.desal.2009.09.127.