PEBA/Na-X multilayer hybrid membrane for CO2 separation: Influence of Na-X zeolite layer synthesis condition

Document Type : Article

Authors

1 - Research Center of Nanostructure Material, Sahand University of Technology, Sahand New Town, Tabriz, Postal Code: 5331817634, Iran. - Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.

2 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Postal Code: 143-59-16-471, Iran.

Abstract

The effects of synthesis time and the number of synthesis layers were investigated on the synthesis of Na-X zeolite sublayer for fabricating a PEBA/Na-X hybrid membrane. The CO2/N2 separation was considered as the objective function to obtain an effective Na-X sublayer. SEM and AFM studies of the synthesized sublayers reveal that 6 hour synthesis time and one synthesis layer give an Na-X sublayer (ZSL6-1) with sub-micron thickness (< 1µm), and roughness of 13 nm. The N2 permeation (11900 GPU) shows the low mass transfer resistance through the ZSL6-1 sublayer. The ZSL6-1 sublayer in the hybrid structure of the membrane leads to the high stability of the multilayer structure via the anchoring effect of the polymer. Hydroxyl groups, along with positive and negative charges on the surface of the Na-X sublayer, cause to strong bonding of the polymer layer and prevent its delamination. The surface coverage of the sublayer by polymer has increased the mass transfer resistance just for N2 and increase the perm-selectivity. These properties, along with the high affinity of the Na-X to the adsorption of CO2, results in a 56% increase in the perm-selectivity of CO2/N2 (~70) compared to net PEBA (~40-50) and the recently reported hybrid membranes.

Keywords

Main Subjects


References:
1. Khanongnuch, R., Di Capua, F., Lakaniemi, A.M., et al. "Transient-state operation of an anoxic biotrickling filter for H2S removal", J. Hazard. Mater., 377, pp. 42-51 (2019). DOI: 10.1016/j.jhazmat.2019.05.043.
2. Fu, L., Ren, Zh., Si, W., et al. "Research progress on CO2 capture and utilization technology", J. CO2 Util., 66, 102206 (2022). DOI: 10.1016/j.jcou.2022.102260.
3. Rezakazemi, M., Heydari, I., and Zhang, Zh. "Hybrid systems: Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas", J. CO2 Util., 18, pp. 362-369 (2017). DOI: 10.1016/j.jcou.2017.02.006.
4. Castro-Munoz, R., Ahmad, M.Z., Malankowska, M., et al. "A new relevant membrane application: CO2 direct air capture (DAC)", Chem. Eng. J., 446(2), 137047 (2022). DOI: 10.1016/j.cej.2022.137047.
5. Cheng, X., Pan, F., Wang, M., et al. "Hybrid membranes for pervaporation separations", J. Memb. Sci., 541, pp. 329-346 (2017). DOI: 10.1016/j.memsci.2017.07.009.
6. Zakariya, Sh., Yeong, Y.F., Jusoh, N., et al. "Performance of multilayer composite hollow membrane in separation of CO2 from CH4 in mixed gas conditions", Polymers, 14(7), p. 1480 (2022). DOI: 10.3390/polym14071480.
7. Dai, Y., Niu, Zh., Luo, W., et al. "A review on the recent advances in composite membranes for CO2 capture processes", Sep. Purif. Technol., 307, p. 122752 (2023). DOI: 10.1016/j.seppur.2022.122752.
8. Momeni, M., Elyasi Kojabad, M., Khanmohammadi, S., et al. "Impact of support on the fabrication of poly (ether-b-amide) composite membrane and economic evaluation for natural gas sweetening", J. Nat. Gas Sci. Eng., 62, pp. 236-246 (2019). DOI: 10.1016/j.jngse.2018.12.014.
9. Elyasi Kojabad, M. and Momeni, M. "Fabrication of PEBA polymeric membrane layers on nanostructure PSF supports to separation of CO2 from N2 and CH4", J. Appl. Chem., 15(54), pp. 101-112 (2020). DOI: 10.22075/chem.2020.16150.1546.
10. Elyasi Kojabad, M., Babaluo, A.A., Tavakoli, A., et al. "A novel high-performance facilitated transport membrane by simultaneously using semi-mobile and fixed carriers for CO2/N2 separation", Process Saf. Environ. Prot., 156, pp. 304-314 (2021).DOI: 10.1016/j.psep.2021.10.017.
11. Sadrzadeh, M., Amirilargani, M., Shahidi, K., et al. "Gas permeation through a synthesized composite PDMS/PES membrane", J. Memb. Sci., 342, pp. 236- 250 (2009). DOI: 10.1016/j.memsci.2009.06.047.
12. Elyasi Kojabad, M., Nouri, M., Babaluo, A.A., et al. "Alumina-PEBA/PSf Multilayer composite membranes for CO2 separation: experimental and molecular simulation studies", Sci. Iran., 30(6), pp. 2043- 2055 (2022). DOI: 10.24200/sci.2022.57717.5383.
13. Afshoun, H.R., Chenar, M.P., Ismail, A.F., et al. "Effect of support layer on gas permeation properties of composite polymeric membranes", Korean J. Chem. Eng., 34, pp. 3178-3184 (2017). DOI: 10.1007/s11814-017-0215-x.
14. Maghsoudi, H. and Soltanieh, M. "Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane", J. Memb. Sci., 470, pp. 159-165 (2014). DOI: 10.1016/j.memsci.2014.07.025.
15. Li, S., Falconer, J.L., and Noble, R.D. "SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio", Microporous Mesoporous Mater., 110, pp. 310- 317 (2008). DOI: 10.1016/j.micromeso.2007.06.016.
16. Hong, S., Kim, D., Jeong, Y., et al. "Healing of microdefects in SSZ-13 membranes via filling with dye molecules and its effect on dry and wet CO2 separations", Chem. Mater., 30, pp. 3346-3358 (2018). DOI: 10.1021/acs.chemmater.8b00757.
17. Vaezi, M.J., Babaluo, A.A., and Maghsoudi, H. "Synthesis, modification and gas permeation properties of DD3R zeolite membrane for separation of natural gas impurities (N2 and CO2)", J. Nat. Gas Sci. Eng., 52, pp. 423-431 (2018). DOI: 10.1016/j.jngse.2018.01.018.
18. Wang, B., Hu, N., Wang, H., et al. "Improved AlPO-18 membranes for light gas separation", J. Mater. Chem. A, 3, pp. 12205-12212 (2015). DOI: 10.1039/C5TA01260K.
19. Aydani, A., Brunetti, A., Maghsoudi, H., et al. "CO2 separation from binary mixtures of CH4, N2, and H2 by using SSZ-13 zeolite membrane", Sep. Purif. Technol., 256, p. 17796 (2021). DOI: 10.1016/j.seppur.2020.117796.
20. Sandstrom, L., Sjoberg, L., and Hedlund, J. "Very high  flux MFI membrane for CO2 separation", J. Memb. Sci., 380, pp. 232-240 (2011). DOI: 10.1016/j.memsci.2011.07.011.
21. Kida, K., Maeta, Y., and Yogo, K. "Preparation and gas permeation properties on pure silica CHA-type zeolite membranes", J. Memb. Sci., 522, pp. 363-370 (2017). DOI: 10.1016/j.memsci.2016.09.002.
22. Isa, M.A. and Halim, M.H. "Cation-exchanged Na-Y Zeolite: Effect of temperature and ion concentration to membrane performance", J. Phys. Conf. Ser., 1349, p. 012072 (2019). DOI: 10.1088/1742-6596/1349/1/012072.
23. Nazir, L.S.M., Yeong, Y.F., and Chew, T.L. "Methods and synthesis parameters affecting the formation of FAU type zeolitemembrane and its separation performance: a review", J. Asian Ceram. Soc., 8(3), pp. 553-571 (2020). DOI: 10.1080/21870764.2020.1769816.
24. Kusakabe, K., Kuroda, T., Uchino, K., et al. "Gas permeation properties of ion-exchanged faujasite-type zeolite membranes", AIChE J., 45, pp. 1220-1226 (2004). DOI: 10.1002/aic.690450608.
25. Kumar, S., Srivastava, R., and Koh, J. "Utilization of zeolites as CO2 capturing agents: Advances and future perspectives", J. CO2 Util., 41, p. 101251 (2020). DOI: 10.1016/j.jcou.2020.101251.
26. Guo, Y., Xiang, B., Zhao, B., et al. "Removal of H2S from simulated blast furnace gas by adsorption over metal-modified 13X zeolite", Fuel, 338, p. 127261 (2023). DOI: 10.1016/j.fuel.2022.127261.
27. Chen, Y., Wang, B., Zhao, L., et al. "New Pebax®/zeolite Y composite membranes for CO2 capture from  flue gas", J. Memb. Sci., 495, pp. 415-423 (2015). DOI: 10.1016/j.memsci.2015.08.045.
28. Treacy, M.M.J. and Higgins, J.B., Collection of Simulated XRD Powder Patterns for Zeolites, 5th Edn., Elsevier, New York, USA (2007). DOI: 10.1016/B978-0-444-53067-7.X5470-7.
29. Karamouz, F., Maghsoudi, H., and Yegani, R. "Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation", J. Nat. Gas Sci. Eng., 35, pp. 980-985 (2016). DOI: 10.1016/j.jngse.2016.09.036.
30. Elyasi Kojabad, M., Momeni, M., Babaluo, A.A., et al. "PEBA/PSf multilayer composite membranes for CO2 separation: Influence of dip coating parameters", Chem. Eng. Technol., 43, pp. 1451-1460 (2020). DOI: 10.1002/ceat.201900262.
31. Medeiros-Costa, I.C., Laroche, C., Perez-Pellitero, J., et al. "Characterization of hierarchical zeolites: Combining adsorption/intrusion, electron microscopy, diffraction and spectroscopic techniques", Microporous Mesoporous Mater., 287, pp. 167-176 (2019). DOI: 10.1016/j.micromeso.2019.05.057.
32. Singh, H.K.K., Amin, K., and Arshad, S.E. "Ion exchange capacity of zeolite A with zinc nitrate and its antimicrobial activity", Pure App. Chem., 93(1), pp. 39-46 (2021). DOI: 10.1515/pac-2019-0811.
33. Ardestani, M.A., Babaluo, A.A., Peyravi, M., et al. "Fabrication of PEBA/ceramic nanocomposite membranes in gas sweetening", Desalination, 250, pp. 1140-1143 (2010). DOI: 10.1016/j.desal.2009.09.127. 
Volume 31, Issue 9
Transactions on Chemistry and Chemical Engineering (C)
May and June 2024
Pages 704-717
  • Receive Date: 03 May 2022
  • Revise Date: 31 March 2023
  • Accept Date: 07 May 2023