References:
1. Jain, V.K. "Advanced machining processes", Allied Publishers (2009). https://doi.org/10.1007/978-1-84800-213-5 11.
2. Rohith, R., Ruthvik, G., Raju, K., et al. "Chemical machining process-a review", Proceedings on Engineering, 4(1), pp. 33-36 (2022). https://doi.org/10.24874/pes04.01.005.
3. Raut, M.A., Kale, S.S., and Pangavkar, P.V. "Fabrication of micro channel heat sink by using photo chemical machining", Int J New Technol Res, 5(4), pp. 72-75 (2019). https://doi.org/10.31871/ijntr.5.4.30.
4. Wagh, D., Dolas, D., and Dhagate, M. "Experimental investigation of photochemical machining on Inconel 600 using ferric chloride", International Journal of Engineering Research & Technology, 4(2), pp. 289-293 (2014).
5. Wangikar, S.S., Patowari, P.K., and Misra, R.D. "Parametric optimization for photochemical machining of copper using overall evaluation criteria", Materials Today: Proceedings, 5(2), pp. 4736-4742 (2018). https://doi.org/10.1016/j.matpr.2017.12.046.
6. Kamble, B., Utpat, A., and Misal, N., et al., Effect of Process Parameters on Response Measures of Cartridge Brass Material in Photo Chemical Machining, in Techno-Societal 2020: Springer, pp. 995-1003 (2021). https://doi.org/10.1007/978-3-030-69921-5 99.
7. Gangmei, G., Kumar, J., Debnath, T., et al., Parametric Analysis for Machining of Stainless Steel AISI (SS-430) Using Photo Chemical Machining, in Recent Advances in Mechanical Engineering: Springer, pp. 829-837 (2021). https://doi.org/10.1007/978-981-15-7711-6 82.
8. Mazarbhuiya, R.M. and Rahang, M., Parametric Study of Photochemical Machining of Aluminium Using Taguchi Approach, in Advances in Mechanical Engineering, Springer, pp. 497-504 (2020). https://doi.org/10.1007/978-981-15-0124-1 45.
9. Ibrahim, A., Abdulwahhab, A., and Shabeeb, A. "Influence of fecl3 on material removal rate and surface roughness in chemical machining process", Kufa Journal of Engineering, 10(1), pp. 44-55 (2019). https://doi.org/10.30572/2018/kje/100104.
10. Gandhi, S.V. and Rahul, M.C. "Experimental investigation of wet chemical machining and optimization of process parameters using grey relational analysis for SS 316L", Materials Today: Proceedings, 5(1), pp. 23908- 23916 (2018). https://doi.org/10.1016/j.matpr.2018.10.183.
11. Mazarbhuiya, R.M. and Rahang, M. "Parametric optimization in photochemical machining of aluminium using Taguchi method", in IOP Conference Series: Materials Science and Engineering, 491(1), IOP Publishing, p. 012033 (2019).https://doi.org/10.1088/1757-899x/491/1/012033.
12. Patil, D.H., Thorat, S.B., Khake, R.A., et al. "Comparative study of FeCl3 and CuCl2 on geometrical features using photochemical machining of monel 400", Procedia CIRP, 68, pp. 144-149 (2018). https://doi.org/10.1016/j.procir.2017.12.084.
13. C akr, O. "Chemical machining of St37 rod using etchant dubstance FeCl3", Acta Physica Polonica A, 135(4), pp. 583-585 (2019). https://doi.org/10.12693/aphyspola.135.583.
14. Ruhela, V., Ansari, M.I., Jadhav, P.V., et al. "An experimental investigation of photo chemical machining process for stainless-steel material by using different etchants", Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.03.324.
15. Gandhi, S.V. and Chanmanwar, R. "A study of variation in MRR influenced by work piece positioning on copper and stainless tseel during wet chemical machining", in International Conference on Advances in Thermal Systems, Materials and Design Engineering (ATSMDE2017) (2017). https://doi.org/10.2139/ssrn.3101587.
16. Saraf, A.R. and Sadaiah, M. "Photochemical machining of a novel cardiovascular stent", Materials and Manufacturing Processes, 32(15), pp. 1740-1746 (2017). https://doi.org/10.1080/10426914.2016.1198025.
17. Yang, M.Y. and Youn, J.W. "Ultrasonic-assisted chemical machining of fine rods", Wear, 145(2), pp. 303-313 (1991).https://doi.org/10.1016/0043-1648(91)90138-k.
18. Bahrami, P., Khoshanjam, A., and Azizi, A. "Evaluation of fatigue behavior and surface characteristics of novel machining process: Rotary chemical machining (RCM)", ADMT Journal, 14(3), pp. 17-24 (2021).
19. Wang, J., Sun, Q., and Sun, P. "Research status and prospect of laser scribing process and equipment for chemical milling parts in aviation and aerospace", Micromachines, 13(2), p. 323 (2022).https://doi.org/10.3390/mi13020323.
20. Khuri, A.I. and Mukhopadhyay, S. "Response surface methodology", Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), pp. 128-149 (2010). https://doi.org/10.1002/wics.73.
21. Mumbare, P. and Gujar, A. "Multi objective optimization of photochemical machining for ASME 316 steel using grey relational analysis", International Journal of Innovative Research in Science, Engineering and Technology, 5(7), pp. 12418-12425 (2016). DOI: 10.15680/IJIRSET.2016.0507050.
22. Chanmanwar, R., Balasubramaniam, R., Sapkal, S.U., et al. "Fabrication of microchannels on SS-304 and copper by wet chemical etching and comparison of topographies", in International Conference on Advances in Thermal Systems, Materials and Design Engineering (2017).https://doi.org/10.1016/0043-1648(91)90138-k.
23. Whitcomb, P.J. and Anderson, M.J. "Optimizing processes using response surface methods for design of experiments", RSM Simplified, CRC Press (2004). https://doi.org/10.4324/9781482293777.
24. Akcay, H. and Anagun, A.S. "Multi response optimization application on a manufacturing factory", Mathematical and Computational Applications, 18(3), pp. 531-538 (2013). https://doi.org/10.3390/mca18030531.
25. Jian, C., Jusheng, M., Gangqiang, W., et al. "Effects on etching rates of copper in ferric chloride solutions", in 2nd 1998 IEMT/IMC Symposium (IEEE Cat. No. 98EX225), IEEE, pp. 144-148 (1998). https://doi.org/10.1109/iemtim.1998.704541.
26. Yadav, S., Saraf, A., and Sadaiah, M. "Analysis of undercut for SS304 in photochemical machining", inInternational Conference on Communication and Signal Processing 2016 (ICCASP 2016), Atlantis Press, pp. 284-289 (2016). https://doi.org/10.2991/iccasp-16.2017.45.
27. Saraf, A.R., Sadaiah, M., and Devkare, S. "Optimization of photochemical machining", International Journal of Engineering Science and Technology, 1(3), pp. 7108-7116 (2011). https://doi.org/10.4028/www.scientific.net/amr.548.617.
28. Nemati, B., Mohamamdi, M.M., and Moharrami, R. "Multi-objective optimization of electrochemical finishing for attaining the required surface finish and geometric accuracy in the hole making process", Scientia Iranica, 31(4), pp. 283-294 (2023). https://doi.org/10.24200/sci.2023.58585.5802.