References:
1. Spitzberg, J.D., Zrehen, A., van Kooten, X.F., et al. "Plasmonic-nanopore biosensors for superior singlemolecule detection", Adv. Mater., 31(1900422), pp. 1- 18 (2019). DOI: 10.1002/adma.201900422.
2. Cui, F., Yue, Y., Zhang, Y., et al. "Advancing biosensors with machine learning", ACS Sens., 5(11), pp. 3346-3364 (2020). DOI: 10.1021/acssensors.0c01424.
3. Haleem, A., Javaid, M., Singh, R.P., et al. "Biosensors applications in medical field: a brief review", Sens. Intern., 2(100100), pp. 1-10 (2021). DOI: 10.1016/j.sintl.2021.100100.
4. Zhao, J., He, G., Huang, S., et al. "Etching gassieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation", Sci. Adv., 5(1), pp. 1-9 (2019). DOI: 10.1126/sciadv.aav1851.
5. Wang, S., Yang, L., He, G., et al. "Two-dimensional nanochannel membranes for molecular and ionic separations", Chem. Soc. Rev., 49, pp. 1071-1089 (2020). DOI: 10.1039/C9CS00751B.
6. Shen, Y.J., Kong, Q.R., Fang, L.F., et al. "Construction of covalently-bonded tannic acid/polyhedral oligomeric silsesquioxanes nanochannel layer for antibiotics/ salt separation", J. Membr. Sci., 623, pp. 1-8 (2021). DOI: 10.1016/j.memsci.2020.119044.
7. Shankla, M. and Aksimentiev, A. "Step-defect guided delivery of DNA to a graphene nanopore", Nature Nanotech., 14, pp. 858-865 (2019). DOI: 10.1038/s41565- 019-0514-y.
8. Shi, X., Verschueren, D.V., and Dekker, C. "Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing", Nano Lett., 18(12), pp. 8003-8010 (2018). DOI: 10.1021/acs.nanolett.8b04146.
9. Seifollahi, Z. and Ashrafizadeh S.N. "Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel", Chem. Eng. Sci., 261, pp. 1-13 (2022). DOI: 10.1016/j.ces.2022.117986.
10. Chen, R., Balla, R.J., Lima, A., et al. "Characterization of nanopipet-supported ITIES tips for scanning electrochemical microscopy of single sloidstate nanopores", Anal. Chem., 89(18), pp. 9946-9952 (2017). DOI: 10.1021/acs.analchem.7b02269.
11. Zhou, P. and Su, B. "Enhanced electrochemiluminescence at silica nanochannel membrane studied by scanning electrochemical microscopy", J. Electranaly. Chem., 904, pp. 1-6 (2022). DOI: 10.1016/j.jelechem.2021.115943.
12. Bucci, G. and Spakowitz, A.J. "Systematic approach toward accurate and efficient DNA sequencing via nanoconfinement", ACS Macro Lett., 9(8), pp. 1184- 1191 (2020). DOI: 10.1021/acsmacrolett.0c00423.
13. Yong, H., Molcrette, B., Sperling, M., et al. "Regulating translocation of DNA through poly(nisopropylacrylamide)- ecorated switchable nanopores by cononsolvency effect", Macromolec., 54(9), pp. 4432-4442 (2021). DOI: 10.1021/acs.macromol.1c00215.
14. Zhang, X., Zhang, L. and Li, J. "Peptide-modified nanochannel system for carboxypeptidase B activity detection", Analyt. Chim. Acta., 1057, pp. 36-43 (2019). DOI: 10.1016/j.aca.2019.01.018.
15. Wu, X., Che, C., Wang, X., et al. "Ionic signal enhancement by space charge effect through the DNA rolling circle amplification on the outer surface of nanochannels", Anal. Chem., 93(48), pp. 16043-16050 (2021). DOI: 10.1021/acs.analchem.1c03631.
16. Devarakonda, S., Kim, S., Ganapathysubramanian, B., et al. "Designing asymmetrically modified nanochannel sensors using virtual EIS", Electrochim. Acta., 403, pp. 1-10 (2022). DOI: 10.1016/j.electacta.2021.139694.
17. Gupta, A., Zuk, P.J., and Stone, H.A. "Charging dynamics of overlapping double layers in a cylindrical nanopore", Phy. Rev. Lett., 125, p. 076001 (2020). DOI: 10.1103/PhysRevLett.125.076001.
18. Li, C., Liu, Z., Qiao, N., et al. "The electroviscous effect in nanochannels with overlapping electric double layers considering the height size effect on surface charge", Electrochim. Acta., 419, pp. 1-9 (2022). DOI: 10.1016/j.electacta.2022.140421.
19. Ramirez, P., Manzanares, J.A., Cervera, J., et al. "Nanopore charge inversion and current-voltage curves in mixtures of asymmetric electrolytes", J. of Memb. Sci., 563, pp. 633-642 (2018). DOI: 10.1016/j.memsci.2018.06.032.
20. Davis, S.J., Macha, M., Chernev, A., et al. "Pressureinduced enlargement and ionic current rectification in symmetric nanopores", Nano Lett., 20(11), pp. 8089- 8095 (2020). DOI: 10.1021/acs.nanolett.0c03083.
21. Ma, L., Li, Z., Yuan, Z., et al. "Modulation of ionic current rectification in ultrashort conical nanopores", Anal. Chem., 92(24), pp. 16188-16196 (2020). DOI: 10.1021/acs.analchem.0c03989.
22. Xioang, T., Zhang, K., Jiang, Y., et al. "Ion current rectification: from nanoscale to microscale", Sci. China Chem., 62, pp. 1346-1359 (2019). DOI: 10.1007/s11426-019-9526-4.
23. Liu, J., Fu, B., and Zhang, Z. "Ionic current rectification triggered photoelectrochemical chiral sensing platform for recognition of amino acid enantiomers on self-standing nanochannel arrays", Anal. Chem., 92(13), pp. 8670-8674 (2020). DOI: 10.1021/acs.analchem.0c02341.
24. Zhang, S., Chen, W., Song, L., et al. "Recent advances in ionic current rectification based nanopore sensing: a mini-review", Sens. Actu. Reports., 3, pp. 1-7 (2021). DOI: 10.1016/j.snr.2021.100042.
25. Poggioli, A.R., Siria, A., and Bocquet, L. "Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification", J. Phys. Chem. B., 123(5), pp. 1171-1185 (2019). DOI: 10.1021/acs.jpcb.8b11202.
26. Rabinowitz, J., Edwards, M.A., Whitter, E., et al. "Nanoscale fluid vortices and nonlinear electroosmotic flow drive ion current rectification in the presence of concentration gradients", J. Phys. Chem. A., 123(38), pp. 8285-8293 (2019). DOI: 10.1021/acs.jpca.9b04075.
27. Zhou, Y., Liao, X., Han, J., et al. "Ionic current rectification in asymmetric nanofluidic devices", Chinese Chem. Lett., 31(9), pp. 1-9 (2020). DOI: 10.1016/j.cclet.2020.05.033.
28. Ma, L., Li, Z., Yuan, Z., et al. "Modulation of ionic current rectification in ultrashort conical nanopores", Anal. Chem., 92(24), pp. 16188-16196 (2020). DOI: 10.1021/acs.analchem.0c03989.
29. Li, Z.Q.,Wang, Y.,Wu, Z.Q., et al. "Bioinspired multivalent ion responsive nanopore with ultrahigh ion current rectification", J. Phys., Chem. C., 123(22), pp. 13687-13692 (2019). DOI: 10.1021/acs.jpcc.9b02279.
30. Dartoomi, H., Khatibi, M., and Ashrafizadeh, S.N. "Enhanced ionic current rectification through innovative integration of polyelectrolyte bilayers and chargedwall smart nanochannels", Anal. Chem., 95(2), pp. 1522-1531 (2022). DOI: 10.1021/acs.analchem.2c04559.
31. Cai, J., He, Q., Song, L., et al. "Ion current rectification behavior of conical nanopores filled with spatially distributed fixed charges", J. Phys. Chem. C., 123(43), pp. 26299-26308 (2019). DOI: 10.1021/acs.jpcc.9b06872.
32. Davis, S.J., Macha, M., Chernev, A., et al. "Pressureinduced enlargement and ionic current rectification in symmetric nanopores", Nano Lett., 20(11), pp. 8089- 8095 (2020). DOI: 10.1021/acs.nanolett.0c03083.
33. Kim, Y.D., Choi, S., Kim, A., et al. "Ionic current rectification of porous anodic aluminum oxide (AAO) with a barrier oxide layer", ACS Nano., 14(10), pp. 13727-13738 (2020). DOI: 10.1021/acsnano.0c05954.
34. Wen, C., Zeng, S., Li, S., et al. "On rectification of ionic current in nanopores", Anal. Chem., 91(22), pp. 14597-14604 (2019). DOI: 10.1021/acs.analchem.9b03685.
35. Zhao, C., Zhang, H., Hou, J., et al. "Effect of anion species on ionic current rectification properties of positively charged nanochannels", ACS Appl. Mater. Interfaces., 12(25), pp. 28915-28922 (2020). DOI: 10.1021/acsami.0c08263.
36. Atiqah, A., Jawaid, M., Sapuan, S.M., et al. "Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites", J. of Mater. Res. and Tech., 8(5), pp. 3726-3732 (2019). DOI: 10.1016/j.jmrt.2019.06.032.
37. Ke, K., Bonab, S., Yuan, D., et al. "Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures", Carbon., 139, pp. 52-58 (2018). DOI: 10.1016/j.carbon.2018.06.037.
38. Liu, C., Wu, W., Shi, Y., et al. "Creating Mxene/ reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites", Compo. Part B: Eng., 203, 108486 (2020). DOI: 10.1016/j.compositesb.2020.108486.
39. Nelson, M.D., Ramkumar, N., and Gale, B.K. "Flexible, transparent, sub-100 m micro fluidic channels with fused deposition modeling 3d-printed thermoplastic polyurethane", J. of Micromech. and Microeng., 29(9), 095010 (2019). DOI: 10.1088/1361-6439/ab2f26.
40. Jaso, V., Cvetinov, M., Rakic, S., et al. "Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends", J. of Appl. Poly. Sci., 131(22), p. 41104 (2014). DOI: 10.1002/app.41104.
41. Jing, X., Mi, H.Y., Huang, H.X., et al. "Shape memory thermoplastic polyurethane (TPU)/poly(epsiloncaprolactone) (PCL) blends as self-knotting sutures", J. of Mech. Behav. of Biomed. Mater., 64, pp. 94-103 (2016). DOI: 10.1016/j.jmbbm.2016.07.023.
42. Zheng, Y., Dong, R., Shen, J., et al. "Tunable shape memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone", ACS Appl. Mater. Interf., 8(2), pp. 1371-1380 (2016). DOI: 10.1021/acsami.5b10246.
43. Guo, Y., Yan, L., Zeng, Z., et al. "TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi-walled carbon nanotubes nanofillers", Poly. Eng. and Sci., 60, pp. 1118- 1128 (2020). DOI: 10.1002/pen.25365.
44. Yu, F. and Huang, H.X. "Simultaneously toughening and reinforcing poly(lactic-acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles", Poly. Test., 45, pp. 107-113 (2015). DOI: 10.1016/j.polymertesting.2015.06.001.
45. Jaso, V., Rodic, M.V., and Petrovic, Z.S. "Biocompatible fibers from thermoplastic polyurethane reinforced with polylactic acid microfibers", Euro. Poly. J., 63, pp. 20-28 (2015). DOI: 10.1016/j.eurpolymj.2014.11.041.
46. Fan, Q., Qin, Z., Villmow, T., et al. "Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks", Sen. and Act. B Chem., 156(1), pp. 63-70 (2011). DOI: 10.1016/j.snb.2011.03.073.
47. Yan, L., Xiong, T., Zhang, Z., et al. "Comparative study on TPU/multi-walled carbon nanotubes conductive nanocomposites for volatile organic compounds sensor applications", J. of Poly. Res., 28, p. 350 (2021). DOI: 10.1007/s10965-021-02717-5.
48. Kim, K., Park, J., Suh, J., et al. "3D printing of multiaxial force sensors using carbon nanotube CNT)/thermoplastic polyurethane (TPU) filaments", Sen. and Act. A: Phy., 263, pp. 493-500 (2017). DOI: 10.1016/j.sna.2017.07.020.
49. Khatibi, M., Ashrafizadeh, S.N., and Sadeghi, A. "Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification", Anal. Chim. Acta., 1122, pp. 48-60 (2020). DOI: 10.1016/j.aca.2020.05.011.
50. Sadeghi, A., Azari, M., and Hardt, S. "Electroosmotic flow in soft microchannels at high grafting densities", Phy. Rev. Fluids., 4(6), 063701 (2019). DOI:10.1103/PhysRevFluids.4.063701.
51. Schoch, R. B., van Lintel, H., and Renaud, P. "Effect of the surface charge on ion transport through nanoslits", Phy. of Fluids., 17, 100604 (2005). DOI:10.1063/1.1896936.
52. Pennathur, S. and Santiago, J.G. "Electrokinetic transport in nanochannels 2. Experimets", Anal. Chem., 77(21), pp. 6782-6789 (2007).