Tuning the preferential direction of ion flow in asymmetric nanofluidic mediums

Document Type : Article

Authors

1 Faculty of Aeronautics and Astronautics, Tarsus University, Mersin, 33400 Turkey

2 Batten College of Engineering and Technology, Old Dominion University, Norfolk, 23529 VA.

Abstract

Current rectification and electrokinetic flow properties in an asymmetric nanochannel in a thermoplastic polyurethane membrane were investigated experimentally and numerically. The nanochannel with a tip diameter of about 300 nm showed current rectification, which is evident only in nanochannels with much smaller tip radii (<100 nm), due to the surface properties of the thermoplastic polyurethane material. To elucidate the mechanism of current rectification, a mathematical model consisting of Nernst - Planck equations for the ionic mass transport, the Poisson’s equation for electrostatics, and Navier – Stokes equations for flow field has been developed. It was verified that the obtained numerical results were in qualitative agreement with the experimental results obtained. It was concluded that due to the surface charge of the channel material, a significantly thick electric double layer was formed on the inner surface of the nanochannel in contact with the electrolyte, and this formed a gating mechanism because of overlapping electric double layers near the tip of the asymmetric nanochannel. It has been found that the applied concentration gradient is as effective as low applied potentials and thus can reverse the preferential direction of ion flow.

Keywords

Main Subjects


References:
1. Spitzberg, J.D., Zrehen, A., van Kooten, X.F., et al. "Plasmonic-nanopore biosensors for superior singlemolecule detection", Adv. Mater., 31(1900422), pp. 1- 18 (2019). DOI: 10.1002/adma.201900422.
2. Cui, F., Yue, Y., Zhang, Y., et al. "Advancing biosensors with machine learning", ACS Sens., 5(11), pp. 3346-3364 (2020). DOI: 10.1021/acssensors.0c01424.
3. Haleem, A., Javaid, M., Singh, R.P., et al. "Biosensors applications in medical field: a brief review", Sens. Intern., 2(100100), pp. 1-10 (2021). DOI: 10.1016/j.sintl.2021.100100.
4. Zhao, J., He, G., Huang, S., et al. "Etching gassieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation", Sci. Adv., 5(1), pp. 1-9 (2019). DOI: 10.1126/sciadv.aav1851.
5. Wang, S., Yang, L., He, G., et al. "Two-dimensional nanochannel membranes for molecular and ionic separations", Chem. Soc. Rev., 49, pp. 1071-1089 (2020). DOI: 10.1039/C9CS00751B.
6. Shen, Y.J., Kong, Q.R., Fang, L.F., et al. "Construction of covalently-bonded tannic acid/polyhedral oligomeric silsesquioxanes nanochannel layer for antibiotics/ salt separation", J. Membr. Sci., 623, pp. 1-8 (2021). DOI: 10.1016/j.memsci.2020.119044.
7. Shankla, M. and Aksimentiev, A. "Step-defect guided delivery of DNA to a graphene nanopore", Nature Nanotech., 14, pp. 858-865 (2019). DOI: 10.1038/s41565- 019-0514-y.
8. Shi, X., Verschueren, D.V., and Dekker, C. "Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing", Nano Lett., 18(12), pp. 8003-8010 (2018). DOI: 10.1021/acs.nanolett.8b04146.
9. Seifollahi, Z. and Ashrafizadeh S.N. "Effect of charge density distribution of polyelectrolyte layer on electroosmotic  flow and ion selectivity in a conical soft nanochannel", Chem. Eng. Sci., 261, pp. 1-13 (2022). DOI: 10.1016/j.ces.2022.117986.
10. Chen, R., Balla, R.J., Lima, A., et al. "Characterization of nanopipet-supported ITIES tips for scanning electrochemical microscopy of single sloidstate nanopores", Anal. Chem., 89(18), pp. 9946-9952 (2017). DOI: 10.1021/acs.analchem.7b02269.
11. Zhou, P. and Su, B. "Enhanced electrochemiluminescence at silica nanochannel membrane studied by scanning electrochemical microscopy", J. Electranaly. Chem., 904, pp. 1-6 (2022). DOI: 10.1016/j.jelechem.2021.115943.
12. Bucci, G. and Spakowitz, A.J. "Systematic approach toward accurate and efficient DNA sequencing via nanoconfinement", ACS Macro Lett., 9(8), pp. 1184- 1191 (2020). DOI: 10.1021/acsmacrolett.0c00423.
13. Yong, H., Molcrette, B., Sperling, M., et al. "Regulating translocation of DNA through poly(nisopropylacrylamide)- ecorated switchable nanopores by cononsolvency effect", Macromolec., 54(9), pp. 4432-4442 (2021). DOI: 10.1021/acs.macromol.1c00215.
14. Zhang, X., Zhang, L. and Li, J. "Peptide-modified nanochannel system for carboxypeptidase B activity detection", Analyt. Chim. Acta., 1057, pp. 36-43 (2019). DOI: 10.1016/j.aca.2019.01.018.
15. Wu, X., Che, C., Wang, X., et al. "Ionic signal enhancement by space charge effect through the DNA rolling circle amplification on the outer surface of nanochannels", Anal. Chem., 93(48), pp. 16043-16050 (2021). DOI: 10.1021/acs.analchem.1c03631.
16. Devarakonda, S., Kim, S., Ganapathysubramanian, B., et al. "Designing asymmetrically modified nanochannel sensors using virtual EIS", Electrochim. Acta., 403, pp. 1-10 (2022). DOI: 10.1016/j.electacta.2021.139694.
17. Gupta, A., Zuk, P.J., and Stone, H.A. "Charging dynamics of overlapping double layers in a cylindrical nanopore", Phy. Rev. Lett., 125, p. 076001 (2020). DOI: 10.1103/PhysRevLett.125.076001.
18. Li, C., Liu, Z., Qiao, N., et al. "The electroviscous effect in nanochannels with overlapping electric double layers considering the height size effect on surface charge", Electrochim. Acta., 419, pp. 1-9 (2022). DOI: 10.1016/j.electacta.2022.140421.
19. Ramirez, P., Manzanares, J.A., Cervera, J., et al. "Nanopore charge inversion and current-voltage curves in mixtures of asymmetric electrolytes", J. of Memb. Sci., 563, pp. 633-642 (2018). DOI: 10.1016/j.memsci.2018.06.032.
20. Davis, S.J., Macha, M., Chernev, A., et al. "Pressureinduced enlargement and ionic current rectification in symmetric nanopores", Nano Lett., 20(11), pp. 8089- 8095 (2020). DOI: 10.1021/acs.nanolett.0c03083.
21. Ma, L., Li, Z., Yuan, Z., et al. "Modulation of ionic current rectification in ultrashort conical nanopores", Anal. Chem., 92(24), pp. 16188-16196 (2020). DOI: 10.1021/acs.analchem.0c03989.
22. Xioang, T., Zhang, K., Jiang, Y., et al. "Ion current rectification: from nanoscale to microscale", Sci. China Chem., 62, pp. 1346-1359 (2019). DOI: 10.1007/s11426-019-9526-4.
23. Liu, J., Fu, B., and Zhang, Z. "Ionic current rectification triggered photoelectrochemical chiral sensing platform for recognition of amino acid enantiomers on self-standing nanochannel arrays", Anal. Chem., 92(13), pp. 8670-8674 (2020). DOI: 10.1021/acs.analchem.0c02341.
24. Zhang, S., Chen, W., Song, L., et al. "Recent advances in ionic current rectification based nanopore sensing: a mini-review", Sens. Actu. Reports., 3, pp. 1-7 (2021). DOI: 10.1016/j.snr.2021.100042.
25. Poggioli, A.R., Siria, A., and Bocquet, L. "Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification", J. Phys. Chem. B., 123(5), pp. 1171-1185 (2019). DOI: 10.1021/acs.jpcb.8b11202.
26. Rabinowitz, J., Edwards, M.A., Whitter, E., et al. "Nanoscale  fluid vortices and nonlinear electroosmotic flow drive ion current rectification in the presence of concentration gradients", J. Phys. Chem. A., 123(38), pp. 8285-8293 (2019). DOI: 10.1021/acs.jpca.9b04075.
27. Zhou, Y., Liao, X., Han, J., et al. "Ionic current rectification in asymmetric nanofluidic devices", Chinese Chem. Lett., 31(9), pp. 1-9 (2020). DOI: 10.1016/j.cclet.2020.05.033.
28. Ma, L., Li, Z., Yuan, Z., et al. "Modulation of ionic current rectification in ultrashort conical nanopores", Anal. Chem., 92(24), pp. 16188-16196 (2020). DOI: 10.1021/acs.analchem.0c03989.
29. Li, Z.Q.,Wang, Y.,Wu, Z.Q., et al. "Bioinspired multivalent ion responsive nanopore with ultrahigh ion current rectification", J. Phys., Chem. C., 123(22), pp. 13687-13692 (2019). DOI: 10.1021/acs.jpcc.9b02279.
30. Dartoomi, H., Khatibi, M., and Ashrafizadeh, S.N. "Enhanced ionic current rectification through innovative integration of polyelectrolyte bilayers and chargedwall smart nanochannels", Anal. Chem., 95(2), pp. 1522-1531 (2022). DOI: 10.1021/acs.analchem.2c04559.
31. Cai, J., He, Q., Song, L., et al. "Ion current rectification behavior of conical nanopores filled with spatially distributed fixed charges", J. Phys. Chem. C., 123(43), pp. 26299-26308 (2019). DOI: 10.1021/acs.jpcc.9b06872.
32. Davis, S.J., Macha, M., Chernev, A., et al. "Pressureinduced enlargement and ionic current rectification in symmetric nanopores", Nano Lett., 20(11), pp. 8089- 8095 (2020). DOI: 10.1021/acs.nanolett.0c03083.
33. Kim, Y.D., Choi, S., Kim, A., et al. "Ionic current rectification of porous anodic aluminum oxide (AAO) with a barrier oxide layer", ACS Nano., 14(10), pp. 13727-13738 (2020). DOI: 10.1021/acsnano.0c05954.
34. Wen, C., Zeng, S., Li, S., et al. "On rectification of ionic current in nanopores", Anal. Chem., 91(22), pp. 14597-14604 (2019). DOI: 10.1021/acs.analchem.9b03685.
35. Zhao, C., Zhang, H., Hou, J., et al. "Effect of anion species on ionic current rectification properties of positively charged nanochannels", ACS Appl. Mater. Interfaces., 12(25), pp. 28915-28922 (2020). DOI: 10.1021/acsami.0c08263.
36. Atiqah, A., Jawaid, M., Sapuan, S.M., et al. "Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites", J. of Mater. Res. and Tech., 8(5), pp. 3726-3732 (2019). DOI: 10.1016/j.jmrt.2019.06.032.
37. Ke, K., Bonab, S., Yuan, D., et al. "Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures", Carbon., 139, pp. 52-58 (2018). DOI: 10.1016/j.carbon.2018.06.037.
38. Liu, C., Wu, W., Shi, Y., et al. "Creating Mxene/ reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites", Compo. Part B: Eng., 203, 108486 (2020). DOI: 10.1016/j.compositesb.2020.108486.
39. Nelson, M.D., Ramkumar, N., and Gale, B.K. "Flexible, transparent, sub-100 m micro fluidic channels with fused deposition modeling 3d-printed thermoplastic polyurethane", J. of Micromech. and Microeng., 29(9), 095010 (2019). DOI: 10.1088/1361-6439/ab2f26.
40. Jaso, V., Cvetinov, M., Rakic, S., et al. "Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends", J. of Appl. Poly. Sci., 131(22), p. 41104 (2014). DOI: 10.1002/app.41104.
41. Jing, X., Mi, H.Y., Huang, H.X., et al. "Shape memory thermoplastic polyurethane (TPU)/poly(epsiloncaprolactone) (PCL) blends as self-knotting sutures", J. of Mech. Behav. of Biomed. Mater., 64, pp. 94-103 (2016). DOI: 10.1016/j.jmbbm.2016.07.023.
42. Zheng, Y., Dong, R., Shen, J., et al. "Tunable shape memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone", ACS Appl. Mater. Interf., 8(2), pp. 1371-1380 (2016). DOI: 10.1021/acsami.5b10246.
43. Guo, Y., Yan, L., Zeng, Z., et al. "TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi-walled carbon nanotubes nanofillers", Poly. Eng. and Sci., 60, pp. 1118- 1128 (2020). DOI: 10.1002/pen.25365.
44. Yu, F. and Huang, H.X. "Simultaneously toughening and reinforcing poly(lactic-acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica  nanoparticles", Poly. Test., 45, pp. 107-113 (2015). DOI: 10.1016/j.polymertesting.2015.06.001.
45. Jaso, V., Rodic, M.V., and Petrovic, Z.S. "Biocompatible fibers from thermoplastic polyurethane reinforced with polylactic acid microfibers", Euro. Poly. J., 63, pp. 20-28 (2015). DOI: 10.1016/j.eurpolymj.2014.11.041.
46. Fan, Q., Qin, Z., Villmow, T., et al. "Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks", Sen. and Act. B Chem., 156(1), pp. 63-70 (2011). DOI: 10.1016/j.snb.2011.03.073.
47. Yan, L., Xiong, T., Zhang, Z., et al. "Comparative study on TPU/multi-walled carbon nanotubes conductive nanocomposites for volatile organic compounds sensor applications", J. of Poly. Res., 28, p. 350 (2021). DOI: 10.1007/s10965-021-02717-5.
48. Kim, K., Park, J., Suh, J., et al. "3D printing of multiaxial force sensors using carbon nanotube CNT)/thermoplastic polyurethane (TPU) filaments", Sen. and Act. A: Phy., 263, pp. 493-500 (2017). DOI: 10.1016/j.sna.2017.07.020.
49. Khatibi, M., Ashrafizadeh, S.N., and Sadeghi, A. "Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification", Anal. Chim. Acta., 1122, pp. 48-60 (2020). DOI: 10.1016/j.aca.2020.05.011.
50. Sadeghi, A., Azari, M., and Hardt, S. "Electroosmotic  flow in soft microchannels at high grafting densities", Phy. Rev. Fluids., 4(6), 063701 (2019). DOI:10.1103/PhysRevFluids.4.063701.
51. Schoch, R. B., van Lintel, H., and Renaud, P. "Effect of the surface charge on ion transport through nanoslits", Phy. of Fluids., 17, 100604 (2005). DOI:10.1063/1.1896936.
52. Pennathur, S. and Santiago, J.G. "Electrokinetic transport in nanochannels 2. Experimets", Anal. Chem., 77(21), pp. 6782-6789 (2007). 
Volume 31, Issue 12
Transactions on Nanotechnology (F)
May and June 2024
Pages 920-934
  • Receive Date: 05 December 2021
  • Revise Date: 31 October 2022
  • Accept Date: 18 April 2023