Conceptual modeling and parametric study of the nonlinear dynamics of the floating wind turbine in the presence of primary and internal resonance

Document Type : Article

Authors

Department of Mechanical Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9567, Iran

Abstract

In this paper, a conceptual model is proposed to investigate the nonlinear dynamics of the transverse vibrations of the floating wind turbine. The conceptual models are the best tools to capture the most important phenomena in the dynamic response of the systems. First, the surge dynamics of the TLP platform is modeled as a nonlinear spring. Then the fore-aft motions of the wind turbine is modeled as a spring-mass system. Then simulations are carried out to evaluate the time response of the proposed model. Afterward, the FAST code is utilized to verify the proposed model. The internal resonance and its combinations with the primary resonance are studied by the multiple time scale method. Finally, the frequency response curve is obtained and the effect of the various parameters of the system on the amplitude and the stability of the oscillations are investigated.

Keywords

Main Subjects


References:
1. Ren, Z., Verma, A.S., Li, Y., et al. "Offshore wind turbine operations and maintenance: A state-of-the-art review", Renewable and Sustainable Energy Reviews, 144, 110886 (2021). DOI:10.1016/j.rser.2021.110886.
2. Collu, M. and Borg, M. "Design of  floating offshore wind turbines", In Offshore Wind Farms, Elsevier, pp. 359-385 (2016). DOI:10.1016/B978-0-08-100779- 2.00011-8.
3. Mas-Soler, J., Uzunoglu, E., Bulian, G., et al. "An experimental study on transporting a free-float capable tension leg platform for a 10 MW wind turbine in waves", Renewable Energy, 179, pp. 2158-2173 (2021). DOI:10.1016/j.renene.2021.08.009.
4. Jain, A.K., "Nonlinear coupled response of offshore tension leg platforms to regular wave forces", Ocean Engineering, 24(7), pp. 577-592 (1997).
5. Senjanovic, I., Tomic, M., and Rudan, S. "Investigation of nonlinear restoring stiffness in dynamic analysis of tension leg platforms", Engineering Structures, 56, pp. 117-125 (2013). DOI:10.1016/j.engstruct.2013.04.020.
6. Tabeshpour, M.R., Ahmadi, A., and Malayjerdi, E. "Investigation of TLP behavior under tendon damage", Ocean Engineering, 156, pp. 580-595 (2018).
7. Walia, D., Schunemann, P., Hartmann, H., et al. "Numerical and physical modeling of a tension-leg platform for offshore wind turbines", Energies, 14(12), p. 3554 (2021).
8. Wang, J., Luo, Y., Wang, Y., et al. "Dynamic response of tension leg platform with hydro-pneumatic tensioner under second-order waves and freak waves", Ocean Engineering, 252, p. 111261 (2022).
9. Tabeshpour, M.R. and Hedayatpour, R. "Analytical investigation of nonlinear heave-coupled response of tension leg platform", Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 233(3), pp. 699-713 (2019). DOI:10.1177/1475090218776430.
10. Jonkman, J.M., Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, University of Colorado at Boulder (2007).
11. Tagliafierro, B., Karimirad, M., Martinez-Estevez, I., et al. "Numerical assessment of a tension-leg platform wind turbine in intermediate water using the smoothed particle hydrodynamics method", Energies, 15(11), p. 3993 (2022). DOI:10.3390/en15113993.
12. Tabeshpour, M.R. and Nikmehr, L. "Numerical and experimental study on dynamic response mitigation of tension leg platform using tuned mass damper", Journal of Ship Research, 66(4), pp. 265-276 (2021).
13. Dai, S.S., Chaplin, J.R., Younis, B.A., et al. "Computations and measurements of the global drag force on a tension-leg platform", Ocean Engineering, 239, p. 109710 (2021).
14. Ghabraei, S., Moradi, H., and Vossoughi, G. "Investigation of the effect of the added mass  fluctuation and lateral vibration absorbers on the vertical nonlinear vibrations of the offshore wind turbine", Nonlinear Dynamics, 103(2), pp. 1499-1515 (2021). DOI:10.1007/s11071-020-06194-1.
15. Keighobadi, J., Mohammadian KhalafAnsar, H., and Naseradinmousavi, P. "Adaptive neural dynamic surface control for uniform energy exploitation of  floating wind turbine", Applied Energy, 316, p. 119132 (2022). DOI:10.24200/SCI.2023.61871.7532.
16. Jonkman, J.M. and Buhl Jr, M.L., Fast User's Guide- Updated August 2005, National Renewable Energy Laboratory (NREL), Golden, CO. (2005).
17. Liu, H.B., Duan, F., Yu, F., et al. "Validation of a FAST spar-type  floating wind turbine numerical model with basin test data", IOP Conference Series: Earth and Environmental Science, 188, p. 012096 (2018). DOI:10.1088/1755-1315/188/1/012096.
18. Serret, J., Rodriguez, C., Tezdogan, T., et al. "Code comparison of a NREL-FAST model of the levenmouth wind turbine with the GH bladed commissioning results", Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, 10, pp. 17-22 (2018).
19. Papi, F. and Bianchini, A. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW reference turbines", Renewable and Sustainable Energy Reviews, 162, p. 112489 (2022).
DOI:10.1016/j.rser.2022.112489.
20. Zhu, K. and Chung, J. "Vibration and stability analysis of a simply-supported Rayleigh beam with spinning and axial motions", Applied Mathematical Modelling, 66, pp. 362-382 (2019). DOI:10.1016/j.apm.2018.09.021.
21. Esfahani, S., Esmaeilzade Khadem, S., and Ebrahimi Mamaghani, A. "Nonlinear vibration analysis of an electrostatic functionally graded nano-resonator with surface effects based on nonlocal strain gradient theory", International Journal of
Mechanical Sciences, 151, pp. 508-522 (2019). DOI:10.1016/j.ijmecsci.2018.11.030.
22. Lackner, M.A. "Controlling platform motions and reducing blade loads for  floating wind turbines", Wind Engineering, 33(6), pp. 541-553 (2009). DOI:10.1260/0309-524X.33.6.541.
23. Adilah, A. and Iijima, K. "A spectral approach for efficient fatigue damage evaluation of floating support structure for offshore wind turbine taking account of aerodynamic coupling effects", Journal of Marine Science and Technology, 27(1), pp. 408-421 (2021). DOI:10.1007/s00773-021-00841-x.
24. Pan, Q., Mahfouz, M.Y., and Lemmer, F. "Assessment of mooring configurations for the IEA 15MW  floating offshore wind turbine", Journal of Physics: Conference Series, 2018(1), p. 012030 (2021). DOI:10.1088/1742- 6596/2018/1/012030.
25. Jonkman, J.M. and Matha, D. "Dynamics of offshore floating wind turbines-analysis of three concepts", Wind Energy, 14(4), pp. 557-569 (2011).
26. Jonkman, J., Robertson, A., and Hayman, G. "Hydro dyn user's guide and theory manual, NREL, 2014", Available online. Assessed on Dec (2014).
27. Jonkman, J., Butterfield, S., Musial, W., et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Lab. (NREL), Golden, CO. (United States) (2009). DOI:10.2172/947422.
28. Matha, D., Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009, National Renewable Energy Laboratory (NREL), Golden, CO. (2010). DOI:10.2172/973961.
29. Jonkman, J., Hayman, G., Jonkman, B., et al. "Aerodyn v15 user's guide and theory manual", NREL: Golden, CO., USA (2015).
30. Platt, A., Jonkman, B., and Jonkman, J. "Inflowwind users guide", Technical Report (2016).
31. Nayfeh, A.H. and Mook, D.T., Nonlinear Oscillations, John Wiley & Sons (2008).
32. Prawin, J. and Rao, A.R.M. "Nonlinear structural damage detection based on adaptive volterra filter model", International Journal of Structural Stability and Dynamics, 18(02), p. 1871003 (2018).