References:
1.Han, L.H. and Huo, J. “Concrete-filled hollow structural steelcolumns after exposure to ISO-834 fire standard”, Journal ofStructural Engineering, 129(1), pp. 68-78 (2003). https://doi.org/10.1061/(ASCE)07339445(2003)129:1(68).
2.Han, L.H., Huo, J., and Wang, Y.C. “Compressive and flexural behaviour of concrete filled steel tubes after exposure to standardfire”, Journal of Constructional Steel Research, 61(7), pp. 882-901(2005). https://doi.org/10.1016/j.jcsr.2004.12.005.
3.Han, L.H., Zhao L.H., Yang, X.L., et al. “Experimental study and calculation of fire resistance of concrete-filled hollow steelcolumns”, Journal of Structural Engineering, 129(3), pp. 346-356(2003).https://doi.org/10.1061/(ASCE)07339445(2003)129:3(346).
4.Tan, K.H. and Tang, C.Y. “Interaction model for unprotectedconcrete filled steel columns under standard fire conditions”,Journal of Structural Engineering, 130(9), pp. 1405-1413(2004). https://doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1405).
5.Lie, T.T. and Martin C. “A method to predict the fire resistance of circular concrete filled hollow steel columns”, Journal ofFire Protection Engineering, 2(4), pp. 111-124 (1990).https://doi.org/10.1177/104239159000200402.
6.Sakumoto, Y., Okada, T., Yoshida, M., et at. “Fire resistance ofconcrete-filled, fire-resistant steel-tube columns”, Journal ofMaterials in Civil Engineering, 6(2), pp. 169-184 (1994).https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(169).
7.Yang, D., Liu, F., Huang, S.S., et al. “Structuralbehaviour and design of end-restrained square tubed-reinforced-concrete columns exposed to fire”, Journalof Constructional Steel Research, 182, pp.106675(2021). https://doi.org/10.1016/j.jcsr.2021.106675.
8.Xie, Q., Xiao, J., Xie, W., et al. “Cyclic tests on compositeplate shear walls–concrete encased before and after fireexposure”, Advances in Structural Engineering, 22(1), pp. 54-68 (2019). https://doi.org/10.1177/1369433218777837.
9.Anvari, A.T., Bhardwaj, S.R., Sharma, S., et al. “Performance ofcomposite plate shear walls/concrete filled (C-PSW/CF) under fireloading: A numerical investigation”, Engineering Structures, 271,pp. 114883 (2022). https://doi.org/10.1016/j.engstruct.2022.114883.
10.Masoumi-Zahaneh, F., Hoseinzadeh, M., Rahimi, S., et al.“Numerical investigation of buckling-restrained steel plateshear wall under fire loading”, Earthquakes and Structures,23(1), pp. 59-73 (2022). https://doi.org/10.12989/eas.2022.23.1.059.
11.Xiong, Y., Chen, A., Wu, D., et al. “Seismic performance ofcomposite shear walls filled with demolished concrete lumpsand self-compacting concrete after fire”, Buildings, 12(9), pp.1308 (2022). https://doi.org/10.3390/buildings12091308.
12.Hosseinpour, M., Celikag, M., and Akbarzadeh, B.H.“Strengthening and shape modification of fire-damagedconcrete with expansive cement concrete and CFRP wrap”,Scientia Iranica, 26(2), pp. 699-708 (2019). https://doi.org/10.24200/sci.2017.4592.
13.Liu, F., Wang, Y., Gardner, L., et al. “Experimental andnumerical studies of reinforced concrete columnsconfined by circular steel tubes exposed to fire”,Structural Engineering, 145(11), pp. 04019130 (2019).https://doi.org/10.1061/(ASCE)ST.1943-541X.0002416.
14.Yang, D., Liu, F., Huang, S.S., et al. “ISO 834 standard fire test and mechanism analysis of square tubed-reinforced-concretecolumns”, Journal of Constructional Steel Research, 175, pp.106316 (2020). https://doi.org/10.1016/j.jcsr.2020.106316.
15.Mirzaei, P.P. and Gerami, M. “Collapse assessment ofprotected steel moment frame under post-earthquake fire”,Scientia Iranica, 27(6), pp. 2775-2789 (2020). https://doi.org/10.24200/sci.2019.51391.2148.
16.Yang, D., Liu, F., Huang, S.S., et al. “Structural fire safetydesign of square and rectangular tubed-reinforced-concretecolumns”, Structures, 29, pp. 1286-1321 (2021).https://doi.org/10.1016/j.istruc.2020.12.014.
17.Liu, F., Yang, H., Yan, R., et al. “Experimental andnumerical study on behaviour of square steel tubeconfined reinforced concrete stub columns after fireexposure”, Thin-Walled Structures, 139, pp. 105-125(2019). https://doi.org/10.1016/j.tws.2019.02.037.
18.Nan, Z., Dai, X., Chen H., et al. “A numerical investigation of 3D structural behaviour for steel-composite structures under varioustravelling fire scenarios”, Engineering Structures, 267, pp. 114587 (2022). https://doi.org/10.1016/j.engstruct.2022.114587.
19.Bastami, M., Bastami, A.C., Baghbadrani, M., et al.“Performance of high strength concretes at elevatedtemperatures”, Scientia Iranica, 18(5), pp. 1028-1036 (2011).https://doi.org/10.1016/j.scient.2011.09.001.
20.Ellobody, E. and Young, E.B. “Investigation of concreteencased steel composite columns at elevated temperatures”,Thin-Walled Structures, 48(8), pp. 597-608 (2010).https://doi.org/10.1016/j.tws.2010.03.004.
21.Mao, X. and Kodur, V. “Fire resistance of concrete encasedsteel columns under 3-and 4-side standard heating”, Journal of Constructional Steel Research, 67(3), pp. 270-280 (2011).http://dx.doi.org/10.1016/j.jcsr.2010.11.006.
22.Li, X., Bao, Y., Xue, N., et al. “Bond strength of steel barsembedded in high-performance fiber-reinforced cementitiouscomposite before and after exposure to elevatedtemperatures”, Fire Safety Journal, 92, pp. 98-106 (2017).https://doi.org/10.1016/j.firesaf.2017.06.006.
23.Wei, F., Fang, C., and Wu, B. “Fire resistance of Concrete-Filled Steel Plate Composite (CFSPC) walls”, Fire SafetyJournal, 88, pp. 26-39 (2017).https://doi.org/10.1016/j.firesaf.2016.12.008.
24.Kaffash, M., Karamodin, A., and Moghiman, M. “Behavior ofconcentrically braced steel frames under fire loading”,Scientia Iranica, 29(3), pp. 951-963 (2022).https://doi.org/10.24200/sci.2021.55367.4191.
25.Epackachi, S., Mirghaderi, S.R., and Aghelizadeh, P. “Failureanalysis of the 16-story Plasco building under fire condition”,Scientia Iranica, 29(3), pp. 1107-1124 (2022).https://doi.org/10.24200/sci.2022.57903.5495.
26.Yang, H., Yang, X., and Mao, Z. “Compressive performanceof steel-reinforced concrete columns after exposure to hightemperature”, Journal of Building Engineering, 59, 105120(2022). http://dx.doi.org/10.1016/j.jobe.2022.105120.
27.Yang, D., Huang, S.S., Liu, F., et al. “Structural firedesign of square tubed-reinforced-concrete columns withconnection to RC beams in composite frames”, Journal ofBuilding Engineering, 57, 104900 (2022).https://doi.org/10.1016/j.jobe.2022.104900.
28.Li, Z., Ding, F., Cheng, S., et al. “Mechanical behavior of steel-concrete interface and composite column for circular CFST infire”, Journal of Constructional Steel Research, 196, 107424(2022). https://doi.org/10.1016/j.jcsr.2022.107424.
29.Bouzoubaâ, N. and Lachemi, M. “Self-compacting concreteincorporating high volumes of class F fly ash: Preliminaryresults”, Cement and Concrete Research, 31(3), pp. 413-420(2001). https://doi.org/10.1016/S0008-8846(00)00504-4.
30.Okamura, H. and Ouchi, M. “Self-compacting concrete”,Journal of Advanced Concrete Technology, 1, pp. 5-15 (2003).http://dx.doi.org/10.3151/jact.1.5.
31.ACI-318-19, Building Code Requirements for Structural Concreteand Commentary, Farmington Hills, MI, USA, (2019).
32.C. ASTM, ASTM standards, Philadelphia: American Societyfor Testing Materials (1958).
33.EFNARC, European Federation for Specialist ConstructionChemicals and Concrete Systems, United Kingdom, (2005).
34.ACI-Committee-237, Self-consolidating concrete, ACI 237R-07 Farmington Hills, American Concrete Institute (2007).
35.Anand, N. and Godwin, A. “Influence of mineral admixtureson mechanical properties of self‐compacting concrete underelevated temperature”, Fire and Materials, 7(40), pp. 940-958(2016). https://doi.org/10.1002/fam.2353.
36.Aydin, A.C. “Self compactability of high-volume hybridfiber reinforced concrete”, Construction and BuildingMaterials, 21(6), pp. 1149-1154 (2007). https://doi.org/10.1016/j.conbuildmat.2006.11.017.
37.Aydin, A.C., Arslan, A., and Gül, R. “Mesoscale simulation ofcement based materials’ time-dependent behavior”,Computational Materials Science, 41(1), pp. 20-26 (2007). https://doi.org/10.1016/j.commatsci.2007.02.012.
38.Aydin, A.C. and Bayrak, B. “The torsional behavior ofreinforced self-compacting concrete beams”, Advances inConcrete Construction, 8(3), pp. 187-198 (2019). https://doi.org/10.12989/acc.2019.8.3.187.
39.Aydın, A.C., Kan, A., Candan F., et al. “Sulphate resistance ofboron active belite cement concrete”, Journal of CementBased Composites, 1(1), pp. 11-16 (2020). https://doi.org/10.36937/cebacom.2020.001.003.
40.Khaloo, A., Raisi, E.M., Hosseini, P., et al. “Mechanicalperformance of self-compacting concrete reinforced with steelfibers”, Construction and Building Materials, 51, pp. 179-186(2014). https://doi.org/10.1016/j.conbuildmat.2013.10.054.
41.Kurt, M., Gül, M.S., Gül R., et al. “The effect of pumicepowder on the self-compactability of pumice aggregate lightweight concrete”, Construction and Building Materials, 103, pp. 36-46 (2016). https://doi.org/10.1016/j.conbuildmat.2015.11.043.
42.Uzbaş, B. and Aydın, A.C. “Analysis of fly ash concrete withScanning Electron Microscopy and X-ray diffraction”,Advances in Science and Technology, Research Journal, 13(4),pp. 100-110 (2019). http://dx.doi.org/10.12913/22998624/114178.
43.ISO-834, Fire Resistance Tests, Elements of BuildingConstruction, International Standards Organization (1980).
44.Xiong, M.X. and Liew, J.R. “Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fireresistance of ultra-high strength concrete filled steel tubes”,Materials and Design, 104, pp. 414-427, (2016).https://doi.org/10.1016/j.matdes.2016.05.050.
45.Chan, S.Y.N., Luo, X., and Sun, W. “Effect of hightemperature and cooling regimes on the compressive strengthand pore properties of high-performance concrete”,Construction and Building Materials, 14(5), pp. 261-266(2000). https://doi.org/10.1016/S0950-0618(00)00031-3.
46.Li, M., Qian, C., and Sun, W. “Mechanical properties of high-strength concrete after fire”, Cement and Concrete Research,34(6), pp. 1001-1005 (2004). https://doi.org/10.1016/j.cemconres.2003.11.007.
47.Tao, J., Yuan, Y., and Taerwe, L. “Compressive strength ofself-compacting concrete during high-temperature exposure”,Journal of Materials in Civil Engineering, 22(10), pp. 1005-1011 (2010). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000102.
48.Bai, J., Wild, S., and Sabir, B. “Sorptivity and strength of air-cured and water-cured PC–PFA–MK concrete and theinfluence of binder composition on carbonation depth”,Cement and Concrete Research, 32(11), pp. 1813-1821(2002). https://doi.org/10.1016/S0008-8846(02)00872-4.
49.Emmanuel, A.O., Oladipo, F.A., and Olabode, O.“Investigation of salinity effect on compressive strength ofreinforced concrete”, Journal of Sustainable Development, 5(6), pp. 74-82 (2012). http://dx.doi.org/10.5539/jsd.v5n6p74.
50.Mohamed, H.A. “Effect of fly ash and silica fume oncompressive strength of self-compacting concrete underdifferent curing conditions”, Ain Shams Engineering Journal,2(2), pp. 79-86 (2011). https://doi.org/10.1016/j.asej.2011.06.001.
51.Raheem, A.A., Soyingbe, A.A., and Emenike, A.J. “Effect ofcuring methods on density and compressive strength ofconcrete”, International Journal of Applied Science andTechnology, 3(4), (2013).
52.ASTM-C109, Standard test method for compressive strengthof hydraulic cement., American Society for Testing andMaterials (1992).
53.ASTM-E8, Standard Test Methods for Tension Testing ofMetallic Materials, (2016).
54.Atienza, J., and Elices, M. “Behavior of prestressing steelsafter a simulated fire: Fire-induced damages”, Constructionand Building Materials, 23(8), pp. 2932-2940 (2009).https://doi.org/10.1016/j.conbuildmat.2009.02.024.
55.Ding, F., Zhang, C., Yu Y., et al. “Hysteretic behavior of postfire structural steels under cyclic loading”, Journal of Constructional Steel Research, 167, 105847 (2020).https://doi.org/10.1016/j.jcsr.2019.105847.
56.Huang, L., Li, G.Q., Wang, X.X., et al. “High temperaturemechanical properties of high strength structural steels Q550,Q690 and Q890”, Fire Technology, 54(6), pp. 1609-1628(2018). http://dx.doi.org/10.1007/s10694-018-0760-9.
57.Kelly, F. and Sha, W. “A comparison of the mechanicalproperties of fire-resistant and S275 structural steels”, Journalof Constructional Steel Research, 50(3), pp. 223-233 (1999). https://doi.org/10.1016/S0143-974X(98)00252-1.
58.Morozov, Y.D., Chevskaya, O., Filippov, G., et al. “Fire-resistantstructural steels”, Metallurgist, 51(7), pp. 356-366 (2007).
59.Xiao, J., Xie, Z., Li, Xie, Q., et al. “Effect of strain rate oncompressive behaviour of high-strength concrete after exposure to elevated temperatures”, Fire Safety Journal, 83, pp. 25-37 (2016).https://doi.org/10.1016/j.firesaf.2016.04.006.