References:
1. Memon, S., Tomkow, J., and Derazkola, H.A. "Thermo-mechanical simulation of underwater friction stir welding of low carbon steel", Material, 14(17), p. 4953 (2021). DOI: https://doi.org/10.3390/ma14174953.
2. SaravanaKumar, R. and Rajasekaran, T. "Optimizing the underwater friction stir welding parameters to enhance the joint strength of armour grade aluminium alloy AA5083 butt joints", Materials Today: Proceedings, 47, pp. 6999-7005 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.05.280.
3. Ghiasvand, A., Yavari, M.M., Tomkow, J., et al."Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods", Material, 14, p. 6003 (2021). DOI: https://doi.org/10.3390/ma14206003.
4. Lombard, H., Hattingh, D.G., Steuwer, A., et al. "Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy", Engineering Fracture Mechanics, 75, pp. 341- 354 (2008). DOI: https://doi.org/10.1016/j.engfracmech.2007.01.026.
5. Zhang, J., Liu, K., Huang, G., et al. "Optimizing the mechanical properties of friction stir welded dissimilar joint of AM60 and AZ31 alloys by controlling deformation behavior", Materials Science and Engineering, A, 773, p. 138839 (2020). DOI: https://doi.org/10.1016/j.msea.2019.138839.
6. Sevvel, P. and Jaiganesh, V. "Characterization of mechanical properties and microstructural analysis of friction stir welded AZ31B Mg alloy through optimized process parameters", Procedia Engineering, 97, pp. 741-751 (2014). DOI: https://doi.org/10.1016/j.proeng.2014.12.304.
7. Xu, X., Zhang, C., Derazkola, H.A., et al. "UFSW tool pin profile effects on properties of aluminium-steel joint", Vacuum, 192, p. 110460 (2021).DOI: https://doi.org/10.1016/j.vacuum.2021.110460.
8. Derazkola, H.A. and Khodabakhshi, F. "Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel", The International Journal of Advanced Manufacturing Technology, 102(9-12), pp. 4383-4395 (2019). DOI: https://doi.org/10.1007/s00170-019-03544-1.
9. Talebizadehsardari, P., Musharavati, F., Khan, A., et al. "Underwater friction stir welding of Al-Mg alloy: Thermo mechanical modeling and validation", Materials Today Communications, 26, p. 101965 (2021). DOI: https://doi.org/10.1016/j.mtcomm.2020.101965.
10. Mozammil, S., Karloopia, J., Verma, R., et al. "Mechanical response of friction stir butt weld Al-4.5modelling and optimization", Journal of Alloys and Compounds, 826, p. 154184 (2020). DOI: https://doi.org/10.1016/j.jallcom.2020.154184.
11. Zhang, H. and Liu, H. "Mathematical model and optimization for underwater friction stir welding of a heat-treatable aluminum alloy", Materials and Design, 45, pp. 206-211 (2013). DOI: http://dx.doi.org/10.1016/j.matdes.2012.09.0 22.
12. Ghaffarpour, M., Aziz, A., and Hejazi, T.-H. "Optimization of friction stir welding parameters using multiple response surface methodology", Journal of Materials: Design and Applications, 7, pp. 571-583 (2015). DOI: https://doi.org/10.1177/1464420715602139.
13. Guleryuz, G. "Relationship between FSW parameters and hardness of the ferritic steel joints: Modeling and optimization", Vacuum, 178, p. 109449 (2020). DOI: https://doi.org/10.1016/j.vacuum.2020.109449.
14. Shashi Kumar, S., Murugan, N., and Ramachandran, K.K. "Identifying the optimal FSW process parameters for maximizing the tensile strength of friction stir welded AISI 316L butt joints",Measurement, 137, pp. 257-271 (2020). DOI: https://doi.org/10.1016/j.measurement.2019.01.023.
15. Yuvaraj, K.P., Ashoka Varthanan, P., Haribabu, L., et al. "Optimization of FSW tool parameters for joining dissimilar AA7075-T651and AA6061 aluminium alloys using Taguchi technique", Materials Today: Proceeding, 45, pp. 919-925 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.02.942.
16. Lakshminarayanan, A.K. "Enhancing the properties of friction stir welded stainless steel joints via multicriteria optimization", Archives of Civil and Mechanical Engineering, 16, pp. 605-617 (2016). DOI: http://dx.doi.org/10.1016/j.acme.2016.03.012.
17. Heidarzadeh, A., Barenji, R.V., Khalili, V., et al. "Optimizing the friction stir welding of the ff=fi brass plates to obtain the highest strength and elongation", Vacuum, 159, pp. 152-160 (2019). DOI:https://doi.org/10.1016/j.vacuum.2018.10.036.
18. Silva, A.C.F., Braga, D.F.O., Figueiredo, M.A.V.D., et al. "Friction stir welded T-joints optimization", Materials and Design, 55, pp. 120-127 (2014). DOI: http://dx.doi.org/10.1016/j.matdes.2013.09.016.
19. Boukraa, M., Lebaal, N., Mataoui, A., et al. "Friction stir welding process improvement through coupling an optimization procedure and three-dimensional transient heat transfer numerical analysis", Journal of Manufacturing Processes, 34, pp. 566-578 (2018). DOI: https://doi.org/10.1016/j.jmapro.2018.07.002.
20. Medhi, T., Hussain, S.A.I., Roy, B.S., et al. "An intelligent multi-objective framework for optimizing friction-stir welding process parameters", Applied Soft Computing Journal, 104, p. 107190 (2021). DOI: https://doi.org/10.1016/j.asoc.2021.107190.
21. Mohammadzadeh Jamalian, H., Tamjidi Eskandar, M., Chamanara, A., et al. "An artificial neural network model for multi-pass tool pin varying FSW of AA5086- H34 plates reinforced with Al2O3 nanoparticles and optimization for tool design insight", CIRP Journal of Manufacturing Science and Technology, 35, pp. 69-79 (2021).DOI: https://doi.org/10.1016/j.cirpj.2021.05.007.
22. Heidarzadeh, A., Testik, O.M., Guleryuz, G., et al. "Development of a fuzzy logic based model to elucidate the effect of FSW parameters on the ultimate tensile strength and elongation of pure copper joints", Journal of Manufacturing Processes, 53, pp. 250-259 (2020). DOI: https://doi.org/10.1016/j.jmapro.2020.02.020.
23. Wakchaure, K.N., Thakur, A.G., Gadakh, V., et al. "Multi-objective optimization of friction stir welding of aluminium alloy 6082-T6 using hybrid Taguchigrey relation analysis-ANN method", Materials Today: Proceedings, 5(2), pp. 7150-7159 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.380.
24. Shehabeldeen, T.A., Elaziz, M.A., Elsheikh, A.H., et al. "Modeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimize", Journal of Materials Research and Technology, 8(6), pp. 5882-5892 (2019). DOI: https://doi.org/10.1016/j.jmrt.2019.09.060.
25. Banik, A., Saha, A., Deb Barma, J., et al. "Determination of best tool geometry for friction stir welding of AA 6061-T6 using hybrid PCA-TOPSIS optimization method", Measurement, 173, p. 108573 (2021). DOI: https://doi.org/10.1016/j.measurement.2020.108573.
26. Caseiro, J.F., Valente, R.A.F., Andrade-Campos, A., et al. "On the elasto-plastic buckling of Integrally Stiffened Panels (ISP) joined by Friction Stir Welding (FSW): Numerical simulation and optimization algorithms", International Journal of Mechanical Sciences, 76, pp. 49-59 (2013). DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.09.002.
27. Pitchipoo, P., Muthiah, A., Jeyakumar, K., et al. "Friction stir welding parameter optimization using novel multi objective dragon y algorithm", International Journal of Lightweight Materials and Manufacture, 4, pp. 460-467 (2021). DOI: https://doi.org/10.1016/j.ijlmm.2021.06.006.
28. Rahman, M.F., Amin, M.B., and Parvez, M. "Application of AHP in development of multi-criteria ergonomic approach for choosing the optimal alternative for material handling- a case study and software development to facilitate AHP calculation", International Journal of Engineering Research & Technology, 3(6), pp. 1064- 1074 (2014).
29. Blagojevic, B., Athanassiadis, D., Spinelli, R., et al. "Determinig the relative importance of factors affecting the success of innovations in forest technology using AHP", Journal of Multi-Criteria Decision Analysis, 27(1-2), pp. 129-140 (2020). DOI:https://doi.org/10.1002/mcda.1670.
30. Tong, L.I., Chen, C.C., and Wang, C.H. "Optimization of multi-response processes using the VIKOR method", International Journal of Advanced Manufacturing Technology, 31, pp. 1049-1057 (2007). DOI: https://doi.org/10.1007/s00170-005-0284-6.
31. Aravind, A.P., Suryaprakash, S., Vishal, S., et al. "Optimization of welding parameters in CMT welding of Al5083 alloys using VIKOR optimization method", IOP Conf. Series: Materials Science and Engineering, 912, p. 032035 (2020). DOI: http://doi.org/10.1088/1757-899X/912/3/032035.
32. Aravind, A.P., Kurmi, J.S., Swamy, P.M., et al. "Optimization of welding parameters in laser welding of Ti6Al4V using VIKOR optimization method", Materials Today: Proceedings, 45(2), pp. 592-596 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.02.388.
33. Peng, Y., Li, T., Bao, C., et al. "Performance analysis and multi-objective optimization of bionic dendritic furcal energy-absorbing structures for trains", International Journal of Mechanical Sciences, 246, p. 108145 (2023). DOI: https://doi.org/10.1016/j.ijmecsci.2023.108145.
34. Singh, S.K., Prabhakar, S., Rao, D.K., et al. "Multiresponse optimization of EDMed parameters of Ti-6Al-4 V alloy using entropy integrated -VIKOR method", Materials Today: Proceedings, 62, pp. 1163-1168 (2022). DOI: https://doi. org/10.1016/j.matpr.2022.04.348.
35. Swaraj Kumar, B., Varghese, J., and Jacob, J. "Optimal thermochemical material selection for a hybrid thermal energy storage system for low temperature applications using multi criteria optimization technique", Materials Science for Energy Technologies, 5, pp. 452-472 (2022). DOI: https://doi.org/10.1016/j.mset.2022.10.005.
36. Yang, Y., Wang, H., Zhao, Y., et al. "Three-way decision approach for water ecological security evaluation and regulation coupled with VIKOR: A case study in Beijing-Tianjin-Hebei region", Journal of Cleaner Production, 379(1), p. 134666 (2022). DOI: https://doi.org/10.1016/j.jclepro.2022.134666.
37. Meniz, B. and Ozkan, E.M. "Vaccine selection for COVID-19 by AHP and novel VIKOR hybrid approach with interval type-2 fuzzy sets", Engineering Applications of Artificial Intelligence, 119, p. 105812 (2023). DOI: https://doi.org/10.1016/j.engappai.2022.105812.