Strength prediction of composite metal deck slabs under free drop weight impact loading using numerical approach and data set machine learning

Document Type : Article

Authors

Department of Civil and Environmental Engineering, AmirKabir University of Technology, Tehran, Iran

Abstract

Composite metal deck slabs are designed and reinforced at the bottom for positive moments with minimum thermal reinforcement at top. However, when the dynamic impact loading is applied to these slabs without sufficient upper part reinforcements, it may be failed under negative moments. The current study investigates the performance of composite metal deck slabs under free drop weight impact loading. The study is conducted in two main parts: generating a data set using numerical simulation analysis, and training several machines based on the generated data set using machine learning procedures. In the first part, 165 models were produced and analysed using LS-DYNA commercial software. In machine learning part, the FEM results were used as a data set to train the machines and to make prediction on performance of composite metal deck slabs with high accuracy. The main results of the conducted analyses are reported in terms of the maximum negative moment, maximum deflection, and elastic and plastic behaviour of the slab. It was seen that in the cases with high striker velocity, the specimens experienced an ultimate internal negative moment at the range of 60 to 80 kN.m.

Keywords

Main Subjects


References:
1. Evans, H.R. and Wright, H.D. "Steel-concrete composite flooring deck structures", CRC Press, pp. 31-62 (1988). https://www.taylorfrancis.com/chapters/edit/ 10.1201/9781482286366-4/steel.
2. Mohammed, B.S., Al-Ganad, M.A., and Abdullahi, M. "Analytical and experimental studies on composite slabs utilising palm oil clinker concrete", Constr Build Mater, 25, pp. 3550-3560 (2011). https://doi.org/10.1016/J.CONBUILDMAT. 2011.03.048.
3. Ma, W., Becque, J., Hajirasouliha, I., et al. "Crosssectional optimization of cold-formed steel channels to Eurocode 3", Eng Struct., 101, pp. 641-651 (2015). https://doi.org/10.1016/j.engstruct.2015.07.051.
4. Lowe, D., Roy, K., Das, R., et al. "Full scale experiments on splitting behaviour of concrete slabs in steel concrete composite beams with shear stud connection", Structures, 23, pp. 126-138 (2020). https://doi.org/10.1016/j.istruc.2019.10.008.
5. Ye, J., Hajirasouliha, I., Becque, J., et al. "Optimum design of cold-formed steel beams using Particle Swarm Optimisation method", J Constr Steel Res., 122, pp. 80-93 (2016). https://doi.org/10.1016/j. jcsr.2016.02.014.
6. Hedaoo, N.A., Gupta, L.M., and Ronghe, G.N. "Design of composite slabs with profiled steel decking: a comparison between experimental and analytical studies", International Journal of Advanced Structural Engineering, 4, pp. 1-15 (2012). https://doi.org/10.1186/2008-6695-3-1.
7. Fang, Z., Fang, H., Huang, J., et al. "Static behavior of grouped stud shear connectors in steelprecast UHPC composite structures containing thin full-depth slabs", Eng Struct., 252, 113484 (2022). https://doi.org/10.1016/j.engstruct.2021.113484.
8. Zineddin, M. "Dynamic response and behavior of reinforced concrete slabs under impact loading", Int J Impact Eng., 34, pp. 1517-1534 (2007). https://doi.org/10.1016/J.IJIMPENG.2006.10.012.
9. Wang, W., Zhang, D., Lu, F., et al. "Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion", Eng Fail Anal., 27, pp. 41-51 (2013). https:// doi.org/10.1016/J.ENGFAILANAL.2012.07.010.
10. Yao, S., Zhang, D., Chen, X., et al. "Experimental and numerical study on the dynamic response of RC slabs under blast loading", Eng Fail Anal., 66, pp. 120-129 (2016). https://doi.org/10.1016/J. ENGFAILANAL. 2016.04.027.
11. Thiagarajan, G., Kadambi, A.V., Robert, S., et al. "Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads", Int J Impact Eng., 75, pp. 162-173 (2015). https://doi.org/10.1016/J.IJIMPENG.2014.07.018.
12. Yankelevsky, D.Z., Karinski, Y.S., and Feldgun, V.R. "Dynamic punching shear failure of a RC  at slab-column connection under a collapsing slab impact", Int J Impact Eng., 135, pp. 103401 (2020). https://doi.org/10.1016/J.IJIMPENG.2019.103401.
13. Sainz-Aja, J., Pombo, J., Tholken, D., et al. "Dynamic calibration of slab track models for railway applications using full-scale testing", Comput Struct., 228, p. 106180 (2020). https://doi.org/10.1016/J.COMPSTRUC.2019.106180.
14. Yang, B., Wang, H., Yang, Y., et al. "Numerical study of rigid steel beam-column joints under impact loading", J Constr Steel Res, 147, pp. 62-73 (2018). https://doi.org/10.1016/j.jcsr.2018.04.004.
15. Zhao, L., Yu, Z.X., Liu, Y.P., et al. "Numerical simulation of responses of  flexible rockfall barriers under impact loading at different positions", J Constr Steel Res, 167, 105953 (2020). https://doi.org/10.1016/j.jcsr.2020.105953.
16. Huo, J., Wang, H., Li, L., et al. "Experimental study on impact behaviour of stud shear connectors  in composite beams with profiled steel sheeting", J Constr Steel Res, 161, pp. 436-449 (2019). https://doi.org/10.1016/j.jcsr.2018.04.029.
17. Guo, Q. and Zhao, W. "Design of steel-concrete composite walls subjected to low-velocity impact", J Constr Steel Res, 154, pp. 190-196 (2019). https://doi.org/10.1016/j.jcsr.2018.12.001.
18. Jung, J.-W., Yoon, Y.-C., Jang, H.W., et al. "Investigation on the resistance of steel-plate concrete walls under high-velocity impact", J Constr Steel Res., 162, 105732 (2019). https://doi.org/10.1016/j.jcsr.2019.105732.
19. Sadraie, H., Khaloo, A., and Soltani, H. "Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading", Eng Struct., 191, pp. 62-81 (2019). https://doi.org/10.1016/J.ENGSTRUCT.2019.04.038.
20. Zhao, C., Lu, X., Wang, Q., et al. "Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading", Eng Struct., 196, 109337 (2019). https://doi.org/10.1016/J.ENGSTRUCT.2019.109337.
21. Al Rawi, Y., Temsah, Y., Baalbaki, O., et al. "Experimental investigation on the effect of impact loading on behavior of post- tensioned concrete slabs", Journal of Building Engineering, 31, 101207 (2020). https://doi.org/10.1016/J.JOBE.2020.101207.
22. Guo, J., Cai, J., and Chen, W. "Inertial Effect on RC Beam Subjected to Impact Loads", International Journal of Structural Stability and Dynamics, 17, 1750053 (2016). https://doi.org/10.1142/S0219455417500535.
23. Kong, X., Fang, Q., Wu, H., et al. "Numerical  predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model", Int J Impact Eng., 95, pp. 61-71 (2016). https://doi.org/10.1016/J.IJIMPENG.2016.04.014.
24. Izatt, C., May, I.M., Lyle, J., et al. "Perforation flowing to impacts on reinforced concrete slabs", Proceedings of the Institution of Civil Engineers- Structures and Buildings, 162, pp. 37-44 (2009). https://doi.org/10.1680/stbu.2009.162.1.37.
25. Emami, F. and Kabir, M.Z. "Performance of composite metal deck slabs under impact loading", Structures, 19, pp. 476-489 (2019). https://doi.org/10.1016/j.istruc.2019.02.015.
26. Ding, X., Hasanipanah, M., Nikafshan Rad, H., et al. "Predicting the blast-induced vibration velocity using a bagged support vector regression optimized with fire y algorithm", Eng Comput., 37, pp. 2273-2284 (2021). https://doi.org/10.1007/s00366-020-00937-9.
27. Kabir, H. and Garg, N. "Machine learning enabled  orthogonal camera goniometry for accurate and robust contact angle measurements", Scientific Reports, 13(1), 1497 (2023). https://doi.org/10.1038/s41598- 023-28763-1.
28. Kardan, Y.H.J.-B.-O. and authorMohammad-T.A. "Experimental and numerical investigation of bridge pier scour estimation using ANFIS and teaching- learning-based optimization methods", Eng Comput., 35, pp. 1103-1120 (2019).
29. Naser, M.Z. "Can past failures help identify vulnerable bridges to extreme events? A biomimetical machine learning approach", Eng Comput., 37(2), pp. 1099- 1131 (2021). 
30. Kiani, J., Camp, C., and Pezeshk, S. "On the application of machine learning techniques to derive seismic  fragility curves", Comput Struct., 218, pp. 108- 122 (2019). https://doi.org/10.1016/J.COMPSTRUC. 2019.03.004.
31. Zhang, R., Chen, Z., Chen, S., et al. "Deep long  short-term memory networks for nonlinear structural seismic response prediction", Comput Struct., 220, pp. 55-68 (2019). https://doi.org/10.1016/ J.COMPSTRUC.2019.05.006.
32. Sakong, J., Woo, S.-C., and Kim, T.-W. "Determination of impact fragments from particle analysis via smoothed particle hydrodynamics and k-means clustering", Int J Impact Eng., 134, 103387 (2019). https://doi.org/10.1016/J.IJIMPENG.2019.103387.
33. Bortolan Neto, L., Saleh, M., Pickerd, V., et  al. "Rapid mechanical evaluation of quadrangular steel plates subjected to localised blast loadings", Int J Impact Eng., 137, 103461 (2020). https://doi.org/10.1016/J.IJIMPENG.2019.103461.
34. Capuano, G. and Rimoli, J.J. "Smart finite elements: A novel machine learning application", Comput Methods Appl Mech Eng., 345, pp. 363-381 (2019). https://doi.org/10.1016/J.CMA.2018.10.046.
35. Feng, Y., Gao, W., Wu, D., et al. "Machine learning aided stochastic elastoplastic analysis", Comput Methods Appl Mech Eng., 357, 112576 (2019). https://doi.org/10.1016/J.CMA.2019.112576.
36. Zohdi, T.I. "Dynamic thermomechanical modeling and  simulation of the design of rapid free-form 3D printing processes with evolutionary machine learning", Comput Methods Appl Mech Eng., 331, pp. 343-362 (2018). https://doi.org/10.1016/J.CMA.2017.11.030.
37. Wu, J.-L., Sun, R., Laizet, S., et al. "Representation of stress tensor perturbations with application in machine-learning-assisted turbulence modeling", Comput Methods Appl Mech Eng., 346, pp. 707-726 (2019). https://doi.org/10.1016/J.CMA.2018.09.010.
38. Fang, Z., Roy, K., Mares, J., et al. "Deep learningbased axial capacity prediction for cold-formed steel channel sections using Deep Belief Network", Structures., 33, pp. 2792-2802 (2021). https://doi.org/10.1016/j.istruc.2021.05.096.
39. Fang, Z., Roy, K., Chen, B., et al. "Deep learning-based procedure for structural design of cold-formed steel channel sections with edge-stiffened and un-stiffened holes under axial compression", Thin-Walled Structures., 166, 108076 (2021). https://doi.org/10.1016/j.tws. 2021.108076.
40. Fang, Z., Roy, K., Mares, J., et al. "Deep learningbased axial capacity prediction for cold-formed steel channel sections using Deep Belief Network", Structures, 33, pp. 2792-2802 (2021). https://doi.org/ 10.1016/j.istruc.2021.05.096.
41. Fang, Z., Roy, K., Ma, Q., et al. "Application of deep learning method in web crippling strength prediction of cold-formed stainless steel channel sections under end-two- flange loading", Structures, 33, pp. 2903-2942 (2021). https://doi.org/10.1016/ j.istruc.2021.05.097.
42. Bligh, Y.D.M.A.A.-O. and R. "Evaluation of LSDYNA Concrete Material Model 159", United States,  Federal Highway Administration, Office of Research (2007). 
43. Castedo, R., Segarra, P., Alanon, A., et al. "Air blast resistance of full-scale slabs with different compositions: Numerical modeling and field validation", Int J Impact Eng., 86, pp. 145-156 (2015). https://doi.org/10.1016/J.IJIMPENG.2015.08.004.
44. Sadiq, M., Xiu Yun, Z., and Rong, P. "Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results", Nuclear Engineering and Design. 273, pp. 653-667 (2014). https://doi.org/10.1016/J.NUCENGDES.2014.03.031.
45. Saini, D. and Shafei, B. "Concrete constitutive models for low velocity impact simulations", Int J Impact Eng., 132, 103329 (2019). https:// doi.org/10.1016/J.IJIMPENG.2019.103329.
46. Alanon, A., Cerro-Prada, E., Vazquez-Gallo, M.-J., et al. "Mesh size effect on finite-element modeling of blast-loaded reinforced concrete slab", Eng Comput. 34, pp. 649-658 (2018).
47. Murray, Y.D. "Users Manual for LS-DYNA Concrete Material Model 159", United States, Federal Highway Administration, Office of Research (2007). 
48. ASTM: ASTM C136/C136M-14 "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates", ASTM International, West Conshohocken. (2014). https://doi.org/10.1520/ C0136-C0136M-14.
49. ASTM: A370 "Standard Test Methods and Definitions for Mechanical Testing of Steel Products", (2014).
50. "CEB-FIP model code 1990: design code", London: Telford (1993).
Volume 31, Issue 19
Transactions on Civil Engineering (A)
November and December 2024
Pages 1825-1841
  • Receive Date: 17 December 2021
  • Revise Date: 07 May 2022
  • Accept Date: 05 April 2023