Delamination localization in the composite thin plates using ensemble learning: Bagging and boosting techniques

Document Type : Article


1 Department of Aeronautics Sciences, Air NCO Higher Vocational School, National Defence University, Gaziemir, Izmir, Turkiye

2 Department of Computer Programming, Ege University, Bornova, Izmir, Turkiye


Localization of the delamination is an essential task that is conducted by various destructive and non-destructive approaches, which may require time, experts, and cost. Various intelligent non-destructive techniques are utilized to reduce time consumption, the need for expertise, and expenditures for localizing compositing delaminations. Yet, developing an accurate, robust, and low-cost intelligent delamination identification technique becomes a challenging task due to the anisotropy and the variation in the fiber orientation of the composites. Based on those issues, it is aimed to develop an effective intelligent model to localize delaminations in composite plates. This study measures the performance of the Bagging and Boosting techniques on delamination localization in thin composite plates. To validate the effectiveness of the proposed approaches; cross-ply, angle-ply, and quasi-isotropic composite plates having 2400 different delamination cases are considered. The bagging and boosting models are trained with the vibrational characteristics of the healthy and delaminated composite structures. The free vibration analysis is conducted for those structures to obtain the first five natural frequencies and the corresponding mode shapes. For this purpose, Classical Plate Theory is employed by using Finite Element Analysis. It is concluded that both bagging and boosting techniques are robust, precise, and accurate in localizing delamination.


Main Subjects

1. Wisnom, M.R. "The role of delamination in failure of fibre-reinforced composites", Philos. Trans. Royal Soc., 370, pp. 1850-1870 (2012). DOI: 10.1098/rsta.2011.0441.
2. Figueiredo, E., Park, G., Farraf, C.R., et al. "Machine learning algorithms for damage detection under operational and environmental variability", Struct. Health Monitor, 10(6), pp. 559-572 (2011). DOI: 10.1177/1475921710388971.
3. Chalouhi, E.K., Gonzalez I., Gentile, C., et al. "Damage detection in railway bridges using Machine Learning: application to a historic structure", Procedia Eng., 199, pp. 1931-1936 (2017). DOI: 10.1016/j.proeng.2017.09.287.
4. Soo Loon Wah, W., Chen, Y.T., and Owen, J.S. "A regression-based damage detection method for structures subjected to changing environmental and operational conditions", Eng. Struct., 228, p. 111462(2021). DOI: 10.1016/j.engstruct.2020.111462.
5. Mirzabeigy, A. and Madoliat, R. "Damage detection in a double-beam system using proper orthogonal decomposition and teaching-learning based algorithm", Sci. Iran., 27(2), pp. 757-771 (2020). DOI:10.24200/sci.2019.50520.1738.
6. Jena, S.P. and Parhi, D.R. "Fault detection in cracked structures under moving load through a recurrent-neural-networks-based approach", Sci. Iran., 27(4), pp. 1886-1896 (2020). DOI: 10.24200/sci.2019.50363.1657.
7. Saeed, R.A., Galybin, A.N., and Popov, V. "Crack identification in curvilinear beams by using Ann and ANFIS based on natural frequencies and frequency response functions", Neural Compt. and Appl., 21(7), pp. 1629-1645 (2011). DOI: 10.1007/s00521-011-0716-1.
8. Hakim, S.J.S. and Razak, A. "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Compos. Struct., 14, pp. 367-377 (2013). DOI: 10.12989/scs.2013.14.4.367.
9. Paulraj, M., Yaacob, S., Majid, M.A., et al. "Structural steel plate damage detection using non destructive testing, frame energy based statistical features and artificial neural networks", Procedia Eng., 53, pp. 376- 386 (2013). DOI: 10.1016/j.proeng.2013.02.049.
10. Yan, B., Cui, Y., Zhang, L., et al. "Beam structure damage identification based on BP neural network and support vector machine", Math. Probl. Eng., 2014, pp. 1-8 (2014). DOI: 10.1155/2014/850141.
11. De Fenza, A., Sorrentino, A., and Vitiello, P. "Application of artificial neural networks and probability methods for damage detection using lamb waves", Compos. Struct., 133, pp. 390-403 (2015). DOI: 10.1016/j.compstruct.2015.07.089.
12. Satpal, S.B., Guha, A., and Banerjee, S. "Damage identification in aluminum beams using support vector machine: Numerical and experimental studies", Struct. Cont. Health Monitor., 23(3), pp. 446-457 (2015). DOI: 10.1002/stc.1773.
13. Ghiasi, R., Torkzadeh, P., and Noori, M. "A machinelearning approach for structural damage detection using least square support vector machine based on a new combinational kernel function", Struct. Health Monitor., 15, pp. 302-316 (2016). DOI:10.1177/1475921716639587.
14. Neves, A.C., Gonzalez, I., Leander, J., et al. "Structural health monitoring of bridges: A model-free ANN-BASED approach to damage detection", J. Civil Struct. Health Monitor., 7(5), pp. 689-702 (2017). DOI: 10.1007/s13349-017-0252-5.
15. Kourehli S.S. and Karoumi, R. "Application of extreme learning machine to damage detection of platelike structures", Int. J. Struct. Stab. Dyn., 17(7), 1750068 (2017). DOI: 10.1142/S0219455417500687.
16. Ghiasi, R., Ghasemi, M.R., and Noori, M. "Comparative studies of metamodeling and ai-based techniques in damage detection of structures", Adv. Eng. Softw., 125, pp. 101-112 (2018). DOI: 10.1016/j.advengsoft.2018.02.006.
17. Kourehli, S.S. "Prediction of unmeasured mode shapes and structural damage detection using least squares support vector machine", Struct. Monitor. Maint., 5(3), pp. 379-390 (2018). DOI:10.12989/smm.2018.5.3.379.
18. Khan, A. and Kim, H.S. "Assessment of delaminated smart composite laminates via system identification and supervised learning", Compos. Struct., 206, pp. 354-362 (2018). DOI: 10.1016/j.compstruc.t.2018.08.014.
19. Jac Fredo, A., Abilash, R., Femi, R., et al. "Classification of damages in composite images Using Zernike moments and support vector machines", Compo. B. Eng., 168, pp. 77-86 (2019). DOI: 10.1016/j.compositesb.2018.12.064.
20. Inkoom, S., Sobanjo, J., Barbu, A., et al. "Pavement crack rating using machine learning frameworks: Partitioning, Bootstrap Forest, boosted Trees, Naive Bayes, and K-nearest neighbors", J. Transp. Eng. B: Pavements , 145(3), 04019031 (2019).
21. Gomes, G.F., de Almeida, F.A., Junqueira, D.M., et al. "Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods", Eng. Struct., 181, pp. 111-123 (2019). DOI: 10.1016/j.engstruct.2018.11.081.
22. Zhang, Z., Pan, J., Luo, W., et al. "Vibration-based delamination detection in curved composite plates", Compos. -A. Appl. Sci. Manuf., 119, pp. 261-274 (2019). DOI: 10.1016/j.compositesa.2019.02.002.
23. He, M., Wang, Y., Ramakrishnan, K.R., et al. "A comparison of machine learning algorithms for assessment of delamination in fiber-reinforced polymer composite beams", Struct. Health Monitor., 20(4), pp. 1997-2012 (2021). DOI: 10.1177/1475921720967157.
24. Jacobs, E.W., Yang, C., Demir, K.G., et al. "Vibrational detection of delamination in composites using a combined finite element analysis and machine learning approach", J. Appl. Phys., 128(12), 125104 (2020). DOI: 10.1063/5.0015648.
25. Gillespie, D.I., Hamilton, A.W., Atkinson, R.C., et al. "Composite laminate delamination detection using transient thermal conduction profiles and machine elarning based data analysis", Sensors, 20(24), p. 7227 (2020). DOI: 10.3390/s20247227.
26. Jaanuska, L. and Hein, H. "Delamination quantification by haar wavelets and machine learning", Mech. Compos. Mater., 58, pp. 249-260 (2022).
27. Li, Y., Zhou, K., Qin, H., et al. "Machine learning approach for delamination detection with feature missing and noise polluted vibration characteristics", Compos. Struct., 287, 115335 (2022). DOI: 10.1016/j.compstruct.2022.115335.
28. Reis, P.A., Iwasaki, K.M.K., Voltz, L.R., et al. "Damage detection of composite beams using vibration response and artificial neural networks", Proc. Inst. Mech. Eng. L: J. Mater.: Des. Appl., 236(7), pp. 1419-1430 (2021). DOI: 10.1177/14644207211041326.
29. Mardanshahi, A., Shokrieh, M., and Kazemirad, S. "Identification of matrix cracking in cross-ply laminated composites using Lamb wave propagation", Compos. Struct., 235, 111790 (2020). DOI: 10.1016/j.compstruct.2019.111790.
30. Zheng, T.Z., Tong, H., and Liang, X. "A twostep method for delamination detection in composite laminates using experience-based learning algorithm", Struct. Health Monitor., 21(3), pp. 965-983 (2021). DOI: 10.1177/14759217211018114.
31. Moorthy, V. and Marappan, K. "Identification of delamination severity in a tapered FRP composite plate", Compos. Struct., 299, p. 116054 (2022). DOI: 10.1016/j.compstruct.2022.116054.
32. Xu, Y., Zhou, H., Cui, Y., et al. "Full scale promoted convolution neural network for intelligent terahertz 3D characterization of GFRP delamination", Compos. B: Eng., 242, p. 110022 (2022). DOI: 10.1016/j.compositesb.2022.110022.
33. Rautela, M., Senthilnath, J., Monaco, E., et al. "Delamination prediction in composite panels using unsupervised-feature learning methods with wavelet-enhanced guided wave representations", Compos. Struct, 291, p. 115579 (2022). DOI: 10.1016/j.compstruct.2022.115579.
34. Mardanshahi, A., Nasir, V., Kazemirad, S., et al. "Detection and classification of matrix cracking in laminated composites using guided wave propagation and artificial neural networks", Compos. Struct., 246, p. 112403 (2020). DOI: 10.1016/j.compstruct.2020.112403.
35. Barman, S.K., Maiti, D.K., and Maity, D. "Vibrationbased delamination detection in composite structures employing mixed unified particle swarm optimization", AIAA J., 59(1), pp. 386-399 (2021). DOI: 10.2514/1.J059176.
36. Lim, D.K., Mustapha, K., and Pagwiwoko, C. "Delamination detection in composite plates using random forests", Compos. Struct., 278, p. 114676 (2021). DOI: 10.1016/j.compstruct.2021.114676.
37. Petyt, M. Introduction to Finite Element Vibration Analysis, Cambridge University Press (2010).
38. Ganesh, S., Kumar, K.S., and Mahato, P. "Free vibration analysis of delaminated composite plates using finite element method", Procedia Eng., 114, pp. 1067-1075 (2016). DOI: 10.1016/j.proeng.2016.05.061.
39. Farsadi, T., Sener, O., and Kayran, A. "Free vibration analysis of uniform and asymmetric composite pretwisted rotating thin walled beam", Proc. of the ASME 2017 Int. Mech. Eng. Congr. and Expos, 1, V001T03A016 (2017). DOI: 10.1115/IMECE2017- 70531.
40. Breiman, L. "Random forests", Mach. Learn., 45, pp. 5-32 (2001).
41. Freund, Y. and Schapire, R. "A decision-theoretic generalization of on-line learning and an application to boosting", J. Comput. Syst. Sci., 55(1), pp. 119-139 (1997). DOI: 10.1006/jcss.1997.1504.