References:
1. Jeffery, G.B.L. "The two-dimensional steady motion of a viscous fluid", Lond. Edinb. Dublin Philos. Mag. J. Sci., 29(172), pp. 455-465 (1915).
2. Hamel, G., Spiralformige, B., and Zaher, F. "Dersdeutschen jahresbericht", Math. Ver., 25, pp. 34-60 (1916).
3. Axford, W. "The magnetohydrodynamic Jeffrey- Hamel problem for a weakly conducting fluid", Q. J. Mech. Appl. Math., 14(3), pp. 335-351 (1961).
4. Hamadiche, M., Scott, J., and Jeandel, D. "Temporal stability of Jeffery-Hamel flow", Journal of Fluid Mechanics, 268, pp. 71-88 (1994).
5. Makinde, O.D. and Mhone, P.Y. "Hermite-Pade approximation approach to MHD Jeffery-Hamel flows", Appl. Math. Comput., 181(2), pp. 966-972 (2006).
6. Esmaeilpour, M. and Ganji, D.D. "Solution of the Jeffery-Hamel flow problem by optimal homotopy asymptotic method", Comput. Math. with Appl., 59(11), pp. 3405-3411 (2010).
7. Mahmood, A., Md Basir, M.F., Ali, U., et al. "Numerical solutions of heat transfer for magnetohydrodynamic Jeffery-Hamel
ow using spectral homotopy analysis method", Processes, 7(9), p. 626 (2019).
8. Ellahi, R. "Exact and numerical solutions for nonlinear differential equation of Jeffrey-Hamel flow", 3(1), pp.1-7 (2011).
9. Abbasbandy, S. and Shivanian, E. "Exact analytical solution of the MHD Jeffery-Hamel flow problem", Meccanica, 47(6), pp. 1379-1389 (2012).
10. Bougoffa, L., Mziou, S., and Rach, R.C. "Exact and approximate analytic solutions of the Jeffery-Hamel flow problem by the Duan-Rach modified Adomian decomposition method", Math. Model. Anal., 21(2), pp. 174-1787 (2016).
11. Amiri Rad, E., Mahpeykar, M.R., and Teymourtash, A.R. "Analytic investigation of the effects of condensation shock on turbulent boundary layer parameters of nucleating ow in a supersonic convergent-divergent nozzle", Sci. Iran., 21(5), pp. 1709-1718 (2014).
12. Heydari, M.M. "Investigation of fluid flow and heat transfer of compressible flow in a constricted microchannel", Sci. Iran., 23(5), pp. 2144-2153 (2016).
13. Ahmad, S., Hayat, T., Alsaedi, A., et al. "Finite difference analysis of time-dependent viscous nanofluid flow between parallel plates", Commun. Theor. Phys., 71(11), p. 1293 (2019).
14. Choi, S.U. and Eastman, J.A. "Enhancing thermal conductivity of fluids with nanoparticles", Developments and Applications of Non-Newtonian Flows, 231(66), pp. 99-105 (1995).
15. Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R., et al. "Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method", Appl. Math. Mech., 33(1), pp. 25-36 (2012).
16. Kumar, K.G., Rahimi-Gorji, M., Reddy, M.G., et al. "Enhancement of heat transfer in a convergent/ divergent channel by using carbon nanotubes in the presence of a Darcy-Forchheimer medium", Microsyst. Technol., 26(2), pp. 323-332 (2020).
17. Sarfraz, M., Khan, M., and Muhammad, Y. "Dynamics of water conveying iron oxide and graphene nanoparticles subject to stretching/spiraling surface: An asymptotic approach", Ain Shams Eng. J., 14(8), 102021 (2022).
18. Akinshilo, A.T., Ilegbusi, A., Ali, H.M., et al. "Heat transfer analysis of nanofluid flow with porous medium through Jeffery Hamel diverging/converging channel", J. Appl. Comput. Mech., 6(3), pp. 433-444 (2022).
19. Khan, M., Sarfraz, M., Ahmed, A., et al. "Study of engine-oil based CNT nanofluid flow on a rotating cylinder with viscous dissipation", Phys. Scr., 96(7), 075005 (2021).
20. Berrehal, H. and Makinde, O.D. "Heat transfer analysis of CNTs-water nanofluid flow between nonparallel plates: Approximate solutions", Heat Transf., 50(5), pp. 4978-4992 (2021).
21. Das, A.C. and Nasa, Q.N. "Analysis of magnetohydrodynamic Jeffery-Hamel flow in a convergent-divergent channel using Cu-water nanofluid", J. Eng. Sci., 12(2), pp. 79-92 (2021).
22. Shampine, L.F., Kierzenka, J., and Reichelt, M.W. "Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c", Tutorial notes 2000, pp. 1-27 (2000).
23. Motsa, S.S., Sibanda, P., and Marewo, G.T. "On a new analytical method for flow between two inclined walls", Numer. Algorithms, 61(3), pp. 499-514 (2012).
24. Khan, U., Ahmed, N., and Mohyud-Din, S.T. "Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study", Neural Comput. Appl., 28(1), pp. 37-46 (2017).